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Abstract--Business decision-makers need various decision 

analyses to meet highly competitive environments. With 
increasing cost of intensive workforce and lowering 
marginal-profit products, how to break the limitation of 
resources and optimally reallocate all of the precious resources is 
the major issue to create the competitive advantages in the 
high-technology industry. Moreover, the second industrial 
upgrading has developed industrial robots in some production 
processes for providing more value-added production activities. 
Therefore, this study proposed a new idea of multi-objective 
programming with changeable spaces (decision space and 
objective space) named changeable spaces programming 
extending the concept of De Novo programming. The best 
production resources reallocation in re-designing the decision 
space can be considered how to improve the multi-objective of 
unmanned factory planning in a high-technology firm for 
achieving aspiration level. This method   provides decision 
analysis planning and not only to reach ideal point but also how 
achieve aspiration level in resource reallocation/redesign. A 
numerical example illustrates how to release the trade-offs 
between industrial robots and a workforce subject to constrains 
of the wafer manufacturing and how stage by stage to improve 
each objective for closing aspiration level in objective space. 
Computational results are demonstrated supporting the 
proposed model is easily implemented with flexible effort in 
practical. 
 

I. INTRODUCTION 
 

In developing countries, production-oriented 
manufacturing is usually followed to take advantage of low 
costs, especially low labor costs. This business model has 
been called original equipment manufacturing (OEM) [4]; 
however, today it is facing enormous challenges because of 
competitive pricing throughout many regions of the world 
[16]. Therefore, OEM companies need to further reduce 
production costs. An attractive strategy for doing so is to 
transform or replace intensive labor with automated systems 
across an entire manufacturing system. In addition, OEM 
companies are gradually losing their core competitiveness 
because of problems such as changes in customer needs, 
dynamic fluctuations in marketing environments, 
ill-conceived implementations of traditional semi-automation, 
and increased production using large batch sizes that limit 
flexibility [14]. A feasible way to address such issues is via 
flexible production, which would serve as an intermediate 
step toward the long-term goal of completely automated 
systems (i.e., the unmanned factory). Flexible production is 
costly in high-wage countries [12], while throughout the 
world, implementation of flexible production is challenged by 

high costs relative to efficiency, new requirements, new 
standards, failures, and requirements for technology changes 
during production time [9]. Consequently, industrial upgrades 
or transformations of technology to robotic automation (the 
unmanned factory) are developing critical issues for 
high-tech industries. 

Currently, full robotic automation can be found in parts of 
the automotive industry, where it is used for car body 
assembly, press tending, painting and coating and to some 
extent for assembly of engines and power trains. These 
applications are well established; robot features with respect 
to installation, programming, integration, maintenance, 
performance, and functionality are being continuously refined 
[2]. 

If the unmanned factory is the goal, then the general path 
to that goal appears to be the automation of manufacturing by 
using industrial robots to reduce expenses in the workforce 
and increase production efficiency. However, in this 
intermediate period between labor intensive and fully 
unmanned production, success depends on a balance between 
the use of laborers and robots. This is rarely easy because 
decision maker(s) encounter conflicts between the allocation 
of the workforce to improve production standards and the 
allocation of robots to automate production. In short, the 
dilemma is how to effectively and efficiently re-engineer 
production processes. However, transforming industry 
requires the automation of industrial robots together with 
laborers in today’s manufacturing factories. Although the 
unmanned factory is imperative, there is little literature that 
addresses how allocations of industrial robots and a 
workforce can be optimized under available budgets. In other 
words, while the establishment of an unmanned factory is an 
ongoing goal, few attempts have been made to identify or 
evaluate specific paths to that goal.  

The purpose of this study is to propose a new idea of 
multi-objective programming with changeable space 
programming model [5], [9] based on the basic concept of De 
Novo programming [6], [13], [17], [18], [19], [20], [21], [22], 
which deals with trade-offs in optimizing the use of industrial 
robots cooperating with a workforce for achieving the 
aspiration level in multi-objective space This approach is 
applied to a wafer manufacturing facility in which we aim to 
maintain product quality while simultaneously reallocating 
resources under the total available budget and improving the 
level of unmanned factory planning. We demonstrate the 
effectiveness of changeable space programming on no only 
achieving the ideal point but also achieving the aspiration 
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level of multi-objective space by changing the decision space 
corresponding to attain a redesign optimal system.  

The rest of this paper is organized as follows. Section 2 
describes the proposed changeable space programming in 
terms of a formulation in De Novo programming. Section 3 
introduces the background for an unmanned factory, and 
Section 4 illustrates a numerical example to demonstrate the 
proposed method. Finally, some remarks and conclusions are 
presented in Section 5. 
 

II. CHANGEABLE SPACE PROGRAMMING 
FOMULATION 

 
Usually, a decision model formulated for multi-objective 

or single-objective programming is limited to fixed 
constraints that reflect the boundaries of the given system in 
feasible solutions. This is typically postulated when searching 
for the optimal solution(s) in the feasible decision space 
under given constraints or resources. In particular, the 
traditional optimization methods in multi-objective problem 
only concerned with the Pareto optimal solutions (or call 
non-inferior, non-dominated solutions, or effective solutions) 
within a system rather with the optimality concept itself or on 
expanding the notions of true optimization [20]. When 
dealing with a multi-objective decision model (MODM) 
problem, we usually encounter a situation wherein it is almost 
impossible to optimize all objectives in a given system. This 
property is called trade-offs, which means that one cannot 
increase the levels of satisfaction for one objective without 
decreasing those for another. Though we often apply 
conventional multi-objective programming to search for 
non-inferior solutions (i.e., Pareto optimal solutions) or 
compromise solution, they still need to be transformed into 
single-objective programming to resolve the solutions 
preferred by decision maker(s) and to lessen the trade-offs 
when the objective functions conflict with one another. 

Because of the trade-offs property, we usually cannot find 
a solution that optimizes all criteria simultaneously within its 
fixed constraints or resources. Consequently, a method named 
De Novo programming pioneered by Zeleny offers a different 
viewpoint to the MODM problem for redesigning an optimal 
system [18]. Zeleny believed that most resources can be 
ordered from the market or the cooperating partners for a 
reasonable price so that the only constraint is the total budget 
required to purchase the required resources [1]. As such, the 
main difference between De Novo programming and 
traditional MODM is that De Novo programming determines 
the resource reallocation of a redesign (or reshape) system. 
With this system, its objective functions, subject to existing 
constraints, could eliminate the trade-offs and thus achieve an 
ideal solution (i.e., ideal point) according to the reconstructed 
decision space [3], [17]. The trade-offs are properties 
inadequately addressed in a given system that can be 
eliminated through better design, yielding a more optimal 
system [6], [13], [21]. This is the optimal portfolio of 
resources concept for redesigning or reshaping a given 

system’s resources in the sense of integration, i.e., the levels 
of individual resources are not determined separately so they 
will be trade-offs free in a redesigned system[20], [21]. 

To solve this study’s resources reallocation problem, such 
as a multi-objective problem of maximum objective functions 
can be described as follows [18], [19]  
            { }Max 1, ,k kz | k = q= c x                        

s.t ≤Ax b → ≤pAx pb  → B≤vx (B is total budget)  (1) 
                  0,≥x  

where 1( ,..., ,..., ) n
k k kj knc c c R= ∈c  denotes the profit vector 

of thk objective function in objective set 

{ }1,..., ,..., ,k qZ z z z=  ( )1,..., ,...,
T n

j nx x x R= ∈x  denotes the 

vector of decision variables, [ ]ij m na ×=A  denotes coefficient 

matrix for constraints, 1( ,..., , , )T m
i mb b b R= ∈b  

denotes the vector of resources required in numbers, 
( )1,..., ,..., m

i mp p p R= ∈p  denotes the vector of resource’s 
unit price in each resources required number, 

( )1,..., ,..., n
j nv v v R= = ∈v pA  denotes the vector of unit cost in 

resources of each variable, B = pb denotes the limited total 
budget for all resources required. The optimal solution is an 
objective set { }* * * *

1 , ..., ,...,k qZ z z z= , where 
* sup{ | }k kz c X= ∈x x  for .k∀  If there exists 
* * * *

1( , ..., , , )T n
j nx x x R∈x =  such that objective set Z ∗ =

* * *
1{ , ..., ,..., }k q =c x c x c x * * *

1{ ,..., , , }k qz z z , then *x  is the 
optimal solution in a given system (fixed constraints or 
resources in decision space).  

When a given system that depends on the fixed resources 
of b reaching the optimal solution of both objectives such as 
the best quality and the maximal profit purposes in the system 
[19], [20], [21], it is inappropriate to acquire external 
resources by any means in the real world for redesigning or 
reforming the optimized system, which would thereby break 
through the boundary of fixed resources (see Fig. 1). 

Based on the concept of a changeable space for achieving 
the ideal point as shown in Fig. 2 [5], [10], Tzeng proposed a 
new thinking of multi-objective programming for decision 
space and objective space. Firstly, the traditional MODM 
reaches the front of objective space, i.e., Pareto optimal 
solution; secondly, De Novo programming [21] is to redesign 
the given system (i.e., the decision space) and reach the idea 
point breaking the Pareto optimal solution. How can the most 
effective in improving changeable spaces from idea point to 
achieving aspiration level? We extend the basic concept of De 
Novo programming by Zeleny to propose a new idea of 
multi-objective programming with changeable spaces in 
decision space and objective space by expanding competence 
sets to expand the objective space for achieving aspiration 
level. The competence sets may consider using such as 
“decision making trial  and evaluation laboratory  
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Fig. 1 Trade-offs elimination from a given system (Zeleney, 1995) 
 
 
  
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 2 Aspiration level based on the best improvement rules among inter-relationship 
 

(DEMATEL) technique” to build the influential network 
relation map (INRM) for changeable spaces of decision space 
and objective space, i.e., resources, technology, budget, or 
strategy alliance [6], [13]. Adding to promote the competence 
sets expansion to help decision maker(s) effectively and 
easily find the best improvement-rules, such as following 
relationship (see Fig.2 and Fig. 3).  

First stage, considering that Eq. (1) is an optimization 
problem for a given system, an ideal point, in this case, is not 
reachable because of the property of trade-offs between the 
multiple objectives. When the purpose is to design an optimal 
system that corresponds to changeable decision space rather 
than optimize a given system, we can direct our interest to a 
consideration of how to formulate the minimum total budget 

*B  to achieve the ideal point kz
∗  and 1,...,k = q  by Zeleny 

[15], [16], [17], [18], [19], [20], i.e., 
Min B  = vx              (2) 

k ks.t.    z∗≥c x  (Ideal point), 1,...,k = q  
                    0≥x . 

Solving Eq. (2) to find  ∗x  and = ,B∗ ∗vx  we yields 
*x  and * *B = pb  where the meta-optimum solution in 

objective set *Z  is identified through *x  and *b . Given 
the unit prices of resources ( )1,..., ,...,i mp p p=p  and the 

available budget B = pb  and 1( ,..., , , )T
i mb b b= b  

Profit 

Max 

Quality 

Max 

System-feasible 
options 

Trade-off boundary 

Ideal point 

Good, unavailable 
options 

DEMATEL technique for evaluating the critical 
competences of the competence sets 

INRM for changeable spaces of 
decision space and objective space 

De Novo programming (as Fig. 1) 
Min vx  

k ks.t.    z∗≥c x  (Idea point), 1,...,k = q  

0≥x , find ∗x  and =B  ∗ ∗vx  

Aspiration level based on the best improvement rules 
Min ′v x  

k ks.t.    z∗∗
′ ′′ ≥c x  (Aspiration level), 1,..., ;k = q′ ′  and ,q q′ ≥ ≥ 0x  

find ∗x  and =B  ∗∗ ∗′v x  
For example, promoting the competence set expansion. 
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when re-allocating the total budget, *B  ( *B B≤ , or if 
*B B> , how improving *B B>  into *B B≤  to change 

decision space), this results in the re-allocation of the 
resources portfolio, while also maximizing the values of the 
objective functions. Consequently, the De Novo 
programming for locating a solution with conflicting 
multi-objectives changes the decision space corresponding to 
the objective space and would lead to a superior system shape 
from the given one.  

Second stage, how change decision stage from the 
competence set expansion to upgrade technology 
(innovation/creativity) and improve efficiency for changing 
the technological coefficients (resource requirement) for 
achieving aspiration level in objective space based on the best 
improvement rules. 

*Min  ′v x  (3) 

k ks.t.    z∗∗
′ ′′ ≥c x  (Aspiration level), 1,..., ;k = q′ ′  

andq q′ ≥ ≥ 0x . 
We can find  ∗∗x  and new budget =B ∗∗ ∗∗′v x  for achieving 
aspiration level in objective space (see Fig. 3) 

However, the ideal point used is not in the ordinary 
system, and the budget for the redesigned system using De 
Novo programming is higher than the total available budget 
[15]. Zeleny suggested an optimum-path ratio β  and β′  to 
contract the budget B  to a new meta-optimum budget *B  
(achieving ideal point) B∗∗  (achieving aspiration level) and 
along the optimal path if a particular budget level B  must 
be enforced. This ratio [18]: 

*B Bβ =  and ,B Bβ ∗ ∗∗′ =   (4) 
where can be used to construct the ideal system redesigned as 

in ideal point * * *, , and Zβ β βx b  and * * *, , and Zβ β β′ ′ ′x b
in aspiration level. Eq. (4) provides an efficient tool for a 
virtually instantaneous optimal redesign of even large-scale 
linear systems. This simple and unprecedented ability to 
make complex MODM problems changeable within the state 
of optimality, while expanding or contracting the investment 
or budget B  along the optimum-path ratio β  and β′ , is a 
powerful competitive tool for locating a solution in the new 
system’s decision space. De Novo programming designs the 
resource portfolio by modifying the slope and intercept of 
each soft constraint. The new feasible region is optimally 
modified to satisfy the meta-optimum constraints. The 
optimal solutions generated can determine the minimum 
budget necessary to achieve the meta-optimum.  

 
III. UNMANNED FACTORY 

 
Software systems reined in continuous increases in royalty 

fees over the long term is therefore crucial. This means that 
new more efficient R&D for new scalable system architecture 
concepts, open interfaces, and communication concepts will 
be important drivers in the development of robotic controller 
systems having the ability to consider time [2]. Moreover, 
Martinez et al. [11] pointed out that the consideration of time 
is not the only important benefit but quality must also be 
considered for the entire system’s economy. For instance, the 
recent substitution of incoming workforce within an 
unmanned manufacturing environment is being driven by 
either product quality or the need for a quick process 
response. The production of industrial robots as a whole,. 

 

 
Fig.3 Concept of changeable decision space and aspiration level achievement [9] 

567

2014 Proceedings of PICMET '14: Infrastructure and Service Integration.



however, will require a transition period so the essential 
workforce can be recruited to manage the indusial robots in 
the unmanned factory system, with respect to indicators 
including setup (installation), maintenance, test, and software 
systems [2], [7]. Moreover, troubleshooting techniques need 
to be considered for system failures and malfunctions that 
cause losses in efficiency. 

The following section illustrates a numerical example for 
optimizing system utilization and output quality for industrial 
robots in cooperation with a workforce. 

 
IV. NUMERICAL EXAMPLE OF UNMANNED 

FACTORY FOR CHANGEABLE SPACES 
PROGRAMMING 

 
In this section we offer an empirical example to illustrate 

the changeable space programming method proposed above 
for system optimization design. In this example, the decision 
maker(s) wants to optimize workforce-industrial robots 
utilization ( 1z ) and wafer manufacturing quality ( 2z ) 
simultaneously in a factory. To resolve both the objective 
functions and to determine the ideal point of optimal 
resources reallocation for both, including the number of 
industrial robots ( 1x ) and workforce personnel ( 2x ) for the 
entire process, the changeable programming method is used. 
There are two ways to approach the problem. Case 1 assumes 
a given (and fixed) B, and it explores the trade-offs between 
the individual objective function Z  and the corresponding 
ideal point for redesigning the system; Case 2 releases the B
as a changeable decision space to consider at what level of 
B would *Z  be realizable. Analyzing an optimal path to 
answer this question will allow us to judge how to reach the 
performance ideal point of *Z . 

There are five constraints to consider when solving this 
problem: setup time, maintained time, running test time, 
system changing, and troubleshooting. The parameter settings 
are shown in Table 1. 

In addition, the unit price for each constraint is allowed to 
obtain the total budget B is $232900 on hand. The average 
profit from the wafer sales that maximizes the utilization of 
the industrial robots and the workforce (i.e., 1z ) will have a 

$500 ( 1x ) and $100 ( 2x ) unit price. Moreover, the second 

objective function ( 2z ) is to maximize the total wafer 

manufacturing quality index: 100 points per 1x  and 90 
points per 2x , on an index scale from 0 to 100. We assume 
the same level of importance for both objective functions for 
simplicity. 

 
1 1 1 2 2

2 1 1 2 2

1 2

1 2

1 2

1

1 2

1 2

1 2

Max 500 100
Max 100 90
. . 180 120 840

90 60 480
90 90 540
10 50
100 50 500

2
0,

,  {0,  1}
i

z x y x y
z x y x y

s t x x
x x
x x
x

x x
y y
x i
y y

= +
= +

+ ≤
+ ≤
+ ≤
≤
+ ≤

+ =
≥ ∀

∈

 

 
Note that the workforce by itself cannot produce wafers 

without industrial robot support, so the binary variables 
1 2,  {0,  1}y y ∈  construct the additional constraint 

1 2 2y y+ =  to guarantee industrial robots-workforce 
cooperation. Using traditional linear programming techniques, 
we can easily acquire optimal solutions for *

1 $1200z =  and 
*
2 380z = , corresponding to the optimal decision variables are 
*
1 2x =  and *

2 2x = . For De Novo programming, according 
to Eq. (2), the problem is rewritten as 

 
1 2

1 1 2 2

1 1 2 2

1 2

1 2

Min  45200 26800
. . 500 100 2100

100 90 560
2

0,
,  {0,  1}

i

B x x
s t x y x y

x y x y
y y
x i
y y

= +
+ ≥
+ ≥

+ =
≥ ∀

∈

 

 
The answer can be solved by simplex method with VBA 

as *B =234400 with respect to the optimal solution (i.e.,
* (4,  2)=x ), and * {2200,  580}Z = . The optimal path ratio 
* 0.993631β =  is obtained by (3). The results construct the 

ideal system redesigning as * * (3.974,  1.987)β =x  and
  

TABLE 1 RESOURCE REALLOCATION OF THE UNMANNED FACTORY  
Unit price 

( ip
) 

Constraint 
(Resources)  

Decision Variable 
Resource limitation 

1x 2x
50 Setup time 180 120 840 
30 Maintained time 90 60 480 
100 Running test time 90 90 540 
450 System changing 10 0 50 
200 Troubleshooting 100 50 500 
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TABLE 2 COMPARISON OF SOLUTIONS BY DIFFERENT PROGRAMMING METHODS 
 Traditional programming De Novo programming Changeable space programming 
x   (2,  2)  (3,  1)  (4,  2) 

Z  {1200, 380} {1600, 390} {2200,  580}
 

* * {2185.921,  576.288}Zβ = . For case 1, the *β  will 
enforce the total budget B  remain the same in a given 

system. However, the
*x must be integer such that we have to 

round down * (3.974,  1.987)β =x*  as * * (3,  1)β  = x , and 

the final results aggregate objective functions
* {1600,  390}Z = .  

For case 2 if we can relax or even increase our total 
budget *B  at 1500 as **B , then the newly ideal redesign 
system is achieved by changeable space programming that 

** (4,  2)=x and ** {2200,  580}Z = . Table 2 shows a 
comparison of the three programming methods used to solve 
this problem. The changeable space programming results are 
superior to those of the other methods. 

The changeable space programming also achieves the 
aspiration level (i.e., aspired point) by releasing the budget 
(see Fig. 2) as a component within the decision space, which 
eliminates the limitation on a given system. A new frontier 
for redesigning an optimal system is now within reach by 
changing the decision and objective spaces. 
 

V. REMARKS AND CONCLUSIONS 
 

In this study, we have proposed changeable space 
programming based on De Novo programming, demonstrated 
its application, and compared solutions using different 
programming methods. By redesigning the system, 
changeable space programming can achieve the ideal point in 
the utilization of industrial robots that cooperate with the 
workforce in a wafer manufacturing factory. The results can 
serve as a strategic thinking for decision maker(s) who might 
change their minds (i.e., decision space) concerning how to 
achieve optimal unmanned factory results in the long term. In 
addition, the proposed method can be applied to optimize the 
multiple objective problem examples illustrated in this paper. 

The primary benefit of setting up an unmanned factory is 
the reduction in production time and increased quality while 
optimizing the cooperation between the industrial robots and 
the workforce. It is also possible to decrease the operation 
time (e.g., setup, maintenance, and system change) and 
efficiently plan work to be undertaken by the unmanned 
factory. The automatic performance of tasks can be planned 
to acquire maximum profit as well as maximizing the quality 
of the manufactured products. Furthermore, since there are no 
manual operations performed, the incidence of mistakes in 
operations is reduced with the need for utilization of the 
workforce. 

To realize an unmanned factory system in which the 
workforce prepares all the materials and work pieces in 

advance, the decision maker(s) must consider the need for 
extra storage space, required during the unattended time 
periods. However, an unmanned factory system operation, 
such as wafer manufacturing and the construction industry, is 
difficult to achieve in a short time. Kusuda pointed out that 
intelligent robots with multi-processing would eliminate this 
problem; therefore, the upgrade of industrial robots to 
intelligent robots is imperative in the long term [8]. 

Further research using the proposed method, that is, 
changeable space programming, is needed to develop 
technical innovations for intelligent robots. Parameters such 
as budget, resources, and technical upgrade can be changed 
or even expanded within the decision space of decision 
makers to move beyond the current state-of-the-art. 
Meanwhile, intensive study of dynamical changeable 
decision space transition modeling is needed to extend our 
understanding of how to best redesign optimal systems. 
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