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Abstract--The paper concerns the measurement and 

forecasting of technological change, a topic relevant to many 
high-tech organizations and their customers. We revisit recent 
and classic data sets from technology forecasting data 
envelopment analysis (TFDEA) research and technometrics in 
light of a new visualization technique known as t-Distributed 
Stochastic Neighbor Embedding (t-SNE). The technique is a 
non-linear visualization technique for preserving local structure 
in high-dimensional spaces of data. The technique may be 
classified as a form of topological data analysis. Specifically each 
point in the space represents a potential technological design or 
implementation, and each line segment in the space represents a 
local measure of technological improvement or degradation. We 
hypothesize six distinct kinds of performance development in 
technology within this space including the frontier, the fold, the 
salient, the soliton, and the lock-in. Then we examine the spaces 
to determine which kinds of development are the best 
explanations for observed development. The technique is not 
extrapolative, and therefore cannot supplant existing 
technometric methods. Nonetheless the approach offers a useful 
diagnostic to existing technometric methods, and may help 
advance theories of technological development.   
 

I. INTRODUCTION 
 

How can we forecast the speed and direction of specific 
change for new technologies? Despite the scope and scale of 
technological changes since the industrial revolution, we still 
know relatively little about this question. Empirical successes 
are few – there is for instance the eponymous “Moore’s Law” 
which in fact reflects performance change across a range of 
computing technology. There are a variety of theories of 
technological change, but few look narrowly and specifically 
at performance changes. Still fewer efforts attempt to 
corroborate theories with empirical evidence to corroborate 
sources of change.  

Effective measures for tracking, modelling and 
anticipating the direction of technological performance will 
have considerable payoff in a variety of fields of technology 
and innovation management. The first, and perhaps initial 
inspiration, is in systems acquisition. Technological systems 
which require a long lead time in research and development 
require a correspondingly long window of foresight for 
planning. Without such a window, the system is outdated 
before it is even developed. With such a window, reasonable 
functional requirements and systems integration can proceed 
as technologies develop apace.  

A second opportunity area is in the area of research 
coordination. Many technologies today are distributed and 
staged across multiple organizations. So for instance in the 
automobile industry, parts of the drive chain may be 

developed and produced by different companies. Other newer 
technologies, such as high performance electric batteries, 
may still be in research or development. A further 
complication is that these research and development 
organizations may be public sector organizations with 
correspondingly different incentive structures and intellectual 
property regimes. Tracking technological performance, even 
today, enables these diverse organizations to coordinate their 
activities across alliance networks.  

A third opportunity area lies in managing and planning for 
technological disruption. New technologies are part of a wave 
of creative destruction which reshapes political and economic 
life. Understanding new technological capabilities is an 
important part of military planning, and an essential element 
of maintaining security in an era of unconventional warfare. 
Technological change brings new public infrastructures, and 
the public monies are best spent with a planful and 
coordinated transition towards new technologies. In the 
private sphere many well-established companies have been 
unmade because of a lack of attention to their critical 
assumptions. Too often these critical assumptions are 
undermined by new innovation. Improved tools for tracking 
technological performance could also assist with managing 
these transitions.  

How then to muster improved models and measures of 
technological performance? Evidence on technological 
performance is plentiful, albeit often of a proprietary 
character. So it’s a surprise that conventional statistics or 
operations research techniques have not been more 
extensively applied to the question of modelling 
technological performance. In previous research (below) we 
briefly survey these efforts. There are at least two obstacles to 
modelling performance change. The first is that technologies 
are inherently multivariate, and therefore simple input-output 
models are unable to capture this fundamental characteristic. 
The second challenge is that technological change is 
omnipresent, causing rises in performance across all 
measures, and confounding the ability to separate the distinct 
measures of change. 

Technologies have a systemic character which must be 
captured in an effective model of technology performance. In 
Sahal’s fundamental conceptualization of technology [1] he 
offers three different alternatives. The first conceptualization 
is adopted from economics. Technologies are functions which 
transform inputs into productive output. The problem with 
such a conceptualization is that technological change itself is 
too often left unexplained – the so-called endogeneity 
problem. A second conceptualization sees technologies as 
waypoints along a trajectory which can be easily 
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parameterized. This conceptualization, while useful, lacks 
material to understand the source of performance change. The 
third and final conceptualization by Sahal conceives of 
technologies as systems. This conceptualization usefully 
encompasses the prior ideas of technology, and has been 
considerably expanded by others [c.f. 2].  

A systems conceptualization of technology is 
characteristic of technometrics. Technometrics is a discipline 
which “measures and evaluates technological change with 
important policy implications [3].” We therefore root our 
question within an applied tradition of technometrics. This 
paper presents a new technometric approach for tracking 
technological change which builds on a new renaissance in 
the visualization of complex data sets. We argue that these 
new multivariate visualization techniques, drawn from 
machine learning and data science, are ideal for monitoring 
the complex datasets derived from technological performance 
databases. A second advantage of these visualization 
techniques are their inductive, non-parametric character. We 
may know too little about the character of technological 
change to impose restrictive assumptions, and to foreclose 
some of the knowledge that can be gleaned directly from the 
data.  

The paper is organized as follows. The second section 
reviews previous research in the field of technometrics, with 
a particular attention to the technique known as technological 
forecasting data envelopment analysis (TFDEA) [4]. This is 
followed by a literature review examining structural ideas 
about how technologies progress over time. We then present 
a method new to technometrics. The method, called 
stochastic network embedding (t-SNE) [5], is outlined with 
algorithmic and implementation details. We describe the 
case, which involves tracking hybrid and electrical vehicle 
performance. The case is ideal for comparative purposes 
since it has been previously investigated and analysed using 
TFDEA. The data and database of vehicles used in the case 
are described, and then the method is applied in the analysis 
section. We visualize the resulting dimensions of change in 
the electrical vehicle sector, and reflect on which of the 
hypothesized structures of technological change are best 
revealed by the data set. The paper then concludes with new 
avenues for research. 
 

II. METHODOLOGICAL REVIEW 
 

The purpose of this section is to review prior research in 
the field of technometrics. The review pays particular 
attention to the TFDEA technique since as noted, the case 
later presented permits a multi-methodological comparison of 
TFDEA using a common data set. The section begins with a 
broad survey of the various schools of technometrics, 
focusing particularly on a few critical assumptions in the 
field. These critical assumptions enable a comparison with 
TFDEA, which is broadly reviewed, and a new application of 
an existing technique. This new technique, stochastic network 

embedding, is more broadly described in the subsequent 
methodological section. 

Our review of technometrics is beholden to the 
comprehensive efforts of Coccia [3]. Coccia describes three 
major schools and multiple subschools in the discipline, with 
an intellectual history reaching back more than sixty years. 
Rather than repeat the review here, the following paragraphs 
will highlight a number of critical assumptions which 
underpin the wide variety of technometric methods. Two 
assumptions are of critical importance for the methods in this 
paper; for interested readers we also highlight other 
differences across technometric schools and methods (table 
1).  

The two technometric assumptions which are of critical 
importance for this paper are parameterized versus non-
parameterized approaches, and compositional versus 
decompositional techniques. Parametric approaches create 
explicit metrics, whether of technological performance, or of 
the variance in designs around market leaders, or both. Non-
parametric techniques attempt neither. The advantage of 
parametric approaches are explicit guidance regarding the 
direction of technological change, and a metric to evaluate 
the uncertainties in future forecasts. The disadvantages of 
parametric modelling is the need to develop explicit 
understanding: of the system, the principal drivers of change, 
and the sources of diversity in design.  

Compositional approaches attempt to model the 
technology as a whole, recognizing that performance may be 
an emergent property of multiple, unmodeled technological 
functions. The compositional approach is related to what 
Coccia [3] calls “summative” modelling. Decompositional 
approaches explicitly represent these technological functions. 
The advantage of the compositional approach is the ability to 
understand emergent performance characteristics of 
technologies. A disadvantage is the lack of resolution; 
without a model of the underlying technological 
functionality, important engineering and economic 
constraints may be omitted.  

This covers two significant differences in technometric 
modelling. At least four other differences are worth noting 
(table 1). The measures used in technometric studies differ 
greatly. Some studies are based on actual performance data, 
while others are based on proxies. And, even among those 
studies which use actual data, some are attempting objective 
measures of performance while others are evaluating the user 
utility or satisfaction with enhanced performance. Two other 
differences lie in the level and locus of analysis. Many 
studies, particularly in the broader literature on the economics 
of technological change, study the impact of technology on 
whole industries. Correspondingly, many studies also 
investigate the impact of new technologies on users and 
groups. In this paper we are primarily interested in changes in 
specific studies; the technology (and not its user community ) 
is the principle object of study.  
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TABLE 1. ASSUMPTIONS IN TECHNOMETRIC MODELLING 
Assumption Explanation 
Parameterized Does the model attempt an explicit metric of either technological change, or design variance? 
Compositional  Is the model summative in character, or does it attempt a multivariate perspective? 
Representation Is the model based upon actual data, or are proxies used when assessing technological performance? 
Objectivist Is the model measuring objective outcomes of technological interest, or does it attempt to measure 

increases in utility? 
Level of Analysis Is the technological context an entire industry, or a specific technological component? 
Locus of Analysis Is the model concerned with the object of technological change, or its knock-on effects on those who 

might adopt the technology? 
 

We now turn to a particular approach within 
technometrics known as technology forecasting data 
envelopment analysis (TFDEA). TFDEA is based on a 
foundation of linear programming, a technique for optimizing 
linear or linearized systems. This versatile technique has been 
used for a variety of applications in operations management. 
The application of interest here is data envelopment analysis 
(DEA). Consider a number of different organizations or 
bureaus, each charged with a certain amount of input, and 
transforming this into gainful output. There are multiple 
inputs and outputs, and also multiple production 
technologies. The question underlying DEA is “What is the 
most credible claim that each bureau can make that it has 
been a credible steward of the resource it has been given?” 
Credible answers to this question are cast as optimal 
approaches to a frontier of peak performance. Bureaus can 
then be assessed as being best in class, or below best in class. 
Below best in class organizations can then be given 
benchmark values for potential improvement. The summary 
here is vastly simplified; a more thorough-going account is 
offered by Zhu [6]. The original work in the  field is by 
Charnes et al. [7].The summary here is vastly simplified; a 
more thorough-going account is offered by Zhu [6]. The 
original work in the DEA field is by Charnes et al. [7]. 

The translation to technological forecasting begins with a 
view of technology as a function which transforms productive 
inputs to outputs. Over time technologies mature and 
develop, potentially delivering more output, or requiring less 
input to deliver the same performance. The technological 
frontier advances over time, with some technologies in a 
given year being market leaders, and others having fallen 
behind the performance frontier.  

The technique is non-statistical, and so requires no 
functional specification of the variances in design. 
Furthermore the technique does not require a functional form 
for the technological frontier, instead creating a piecewise 
linear manifold of best-in-class technological performances. 
However the technique does deliver a parameterized function 
describing an optimum approach of a given technology 
towards the high-performance frontier. This function may 
differ from technology to technology.  

The original TFDEA work is by Inman [4]. This versatile 
technique has been widely applied. The approach has been 
used to investigate jet fighters, database technologies, display 
technologies, microprocessors, and wireless communications 
-- among other technologies [8-12]. The approach is 

parameterized since it describes a desirable direction of 
technological change. It is also decompositional since it 
delivers an explicit model of a single technological function. 
In this paper a radically different approach is presented, an 
approach which is compositional and non-parameterized. 
First however, it is necessary to take a deeper look at theories 
describing the nature and direction of technological change.  

 
III. THEORY AND FRAMEWORK 

 
While there is a wealth of theories concerning the role and 

impact of technology in industries and the marketplace, there 
has been relatively lesser attention paid to the nature and 
direction of technology itself. In this section we survey three 
major schools of thought concerning the nature and direction 
of technological change. Significant schools of thought 
include reverse salients, radical innovation, and technological 
lock-in. Synthesizing these schools of thought permit the 
creation of a general framework concerning the spread and 
diffusion of technologies on a manifold or landscape of 
technological possibilities. 

Hughes [13] developed the concept of the reverse salient 
as part of a history of electrification in the United States. The 
reverse salient is originally a military term, describing the 
point in front of troops where morale is lost. Hesitation at that 
point means that momentum has been lost, and the battle may 
potentially be turned to the opponents. In a technological 
sense the reverse salient indicates an obstacle, whether social, 
economic or technological, which presents the full expression 
of potential technological designs. Proponents of the school 
are quick to describe the difference between a bottleneck and 
a salient. A bottleneck indicates a winnowing of possibility, 
while the salient completely shuts out possible directions of 
growth. Mulder and Knot [14] present a case study of reverse 
salients in the development of plastic. Dedehayir and 
Mäkinen [15] present an analytical measure of performance 
gaps, thereby directly operationalizing the concept of a 
reverse salient in terms of observable measures of 
technology. 

There are diverse perspectives on radical innovation; we 
highlight three. The three share a common argument that 
radical change occurs as individual systems and subsystems 
are strained and grow obsolescent. A famous model due to 
Henderson and Clark [16] argues that technological change 
occurs at both the system and the component level. Therefore 
there can be both novel components as well as novelty in 
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technological architecture. Arthur [2] continues this theme, 
arguing that performance constraints can eventually limit 
future technological development until whole subsystems are 
designed and redeveloped. Corroborating Arthur, Suh [17] 
argues that technological change may be driven from the top 
down, or may emerge endemically from constraints in 
individual system components. He presents a design 
methodology which simultaneously addresses both sources of 
change.  

A third school of thought describes technological lock-ins. 
The school characteristically questions whether it is 
necessarily true that technology progresses in a unilateral 
manner, displaying objectively better measures of 
technological performance over time. David [18] presented a 
famous case study which argued that the modern keyboard 
shut out an objectively better design – the Dvorak keyboard. 
The contention that the Dvorak keyboard is objectively better 
is subject to some controversy. Arthur [19] presents a simple 
model which purports some of the driving forces leading to a 
technological lock-in. According to Arthur positive network 
externalities can outweigh initial gains in technological 
performance, causing superior designs to remain unexploited.  

Figure 1 presents a general framework synthesizing major 
perspectives on the direction of technological change. 
Technological change occurs in a landscape, a design space 
or manifold of potential technological opportunities. The 
design space is multivariate, representing a variety of 
different performance measures for the technology. The most 
general conceptualization of this manifold is that it is non-
linear in the underlying performance measures, and that 
change is multi-directional. All changes or trade-offs between 
performance measures are possible, including absolute 
reductions. A much more specific conceptualization of 
technology, often linear and directional, is the technology 
frontier. (See the soliton and the frontier in the diagram 
below.) 

 

 
Figure 1. A Framework for Describing the Varied Direction of 

Technological Change 

The manifold is presented by enclosed shapes in the figure 
above. The initial design is represented by a cross, and 
represents a particular expression of technological 
possibilities. Over time the design is adapted to different 
purposes, and changes in its expression of performance. It 
may or may not fill out the full space of technological 
possibilities. Those design possibilities which are filled are 
shown above in blue. Theories address the highly varied 
nature of these technological changes. Radical change is 
visualized using a fold. The landscape permits only two 
increasingly divergent forms of the technology. When change 
occurs technological changes cause increasingly divergent 
expressions of technological possibilities. The salient shows a 
landscape of technological possibility which is pinched or 
constrained in some manner (whether economically, 
technologically, or socially). The result is a limited, 
directional expression of possibilities. When the space of 
possibility expands, but fails to explore certain possibilities, 
the manifold describes a lock-in.  

These manifolds, and the expression of technological 
possibilities over time, can be visualized using technology 
performance data. In the sections to follow this conceptual 
framework is confronted with data from an electrical vehicle 
case. After describing and analyzing the case we return to this 
framework to determine which if any of the surveyed theories 
of technological change best describe recent directions of 
change in the electrical vehicle sector.  
 

IV. METHOD 
 
This method section justifies the use of a novel and 

versatile data visualization technique for tracking 
technological change. The section first surveys relevant linear 
and non-linear data visualization and data compression 
techniques. The discussion then turns to the particular 
challenges of visualizing high-dimensional data. One specific 
non-linear data visualization technique is described in terms 
of its underlying principles and mathematics. Implementation 
details and outputs from the technique conclude the section.  

The conventional approach for data visualization is based 
on linear algebra. The fundamental technique is known as 
singular value decomposition and entails computing the 
leading eigenvalues and eigenvectors of the system. These 
leading eigenvectors encompass a set of orthogonal, 
maximally informative vectors, which can be used to 
approximate the rest of the data. A range of techniques is 
built of this versatile core. Related techniques include 
principal components analysis, factor analysis, 
correspondence analysis, and multidimensional scaling. In the 
case of multidimensional scaling in two dimensions, the 
technique amounts a geometric approximation. The 
geometric approximation entails finding the best fitting plane 
through a multidimensional cloud. Best in this sense involves 
finding the plane that minimizes the orthogonal distance from 
the data points to the surface of the plane.  
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A variety of different non-linear techniques have also 
been proposed. Like multidimensional scaling, these 
techniques seek finding a subspace of data which preserves 
the structure in the data. Many real world datasets are very 
high-dimensional, so it can be a substantial challenge to 
either visualize the data set in its native dimensions, or to find 
an appropriate reduction in the data so that a sense of the data 
is appropriately conveyed. Techniques in this space include 
self-organizing maps, Sammon mapping, isomaps, generative 
topographical maps, locally linear embedding, Laplacian 
eigenmaps, and maximum variance unfolding. In this paper 
we examine the utility of one particular non-linear 
visualization technique, t-Distributed Stochastic Network 
Embedding (t-SNE). The technique has received attention in 
the literature because of its effectiveness in visualizing a wide 
variety of difficult, high-dimensional data sets.  

The goal of the t-Distributed Stochastic Neighbor 
Embedding (t-SNE) algorithm is to take a full-dimensioned 
data set (n cases by q dimensions) and to embed this data in a 
lower dimensioned space (n cases by r dimensions, where r < 
q). Unlike many linear models, the algorithm only reduces 
dimensionality but not cases. A reduction in cases would 
involve finding exemplary cases and representing the 
remainder of the data set as neighbors of these cases. A full 
description of elements of the algorithm is offered in 
appendix A.  

The algorithm requires the user to specify the perplexity 
of the model. Perplexity is a measure of how much of the 
local structure of the data must be considered when fitting the 
model. A low perplexity (for instance one) means that only 
the relationships between the nearest neighbors are 
considered, while a high perplexity (for instance a value 
equal to the total number of variables, n, the total number of 
cases in the model) indicates that the model will attempt to 
model the relationships between all of the points in the data. 
This measure smoothly interpolates between low and high 
dimensional data, and also between regularly spaced and 
irregularly spaced data. Lower perplexity values will result in 
a high-fidelity representation of the high density regions of 
the space of data.  

Affinities are non-reflexive. For instance, case i may be 
more similar to case j than vice versa. In this model this 
occurs because the data points occur in regions which vary in 
density. When the embedding fits a data point in a high 
density region, it must consider a potentially greater variety 
of information in adjusting the fit then when it fits a low-
density region. The model changes these affinities to be 
reflexive (and thus comparable to Euclidean distances) by 
taking an average value of the two. The model also ignores 
self-similarity in its calculations.  

The algorithm takes as givens (P, T, η, α(t), r), which are 
respectively the perplexity, number of steps in the algorithm, 
the learning parameter, the momentum rate, and the desired 
dimensionality of the embedding. The data (X) is given as an 
input. As part of the initialization the algorithm generates an 

initial low dimensional embedding (Y). The algorithm can be 
initialized with a random solution or the outputs of a linear 
algorithm such as multidimensional scaling. Then the 
affinities between the data points are computed (pij). The 
algorithm itself minimizes a cost function C, with respect to 
the low-dimensional embedding (Y), and constrained by the 
actual data (X). The cost function is based on the Kullback-
Leibler divergence, a general-purpose measure of the 
differences between two probability distributions (table 2).  
 

TABLE 2. SIMPLIFIED DESCRIPTION OF THE T-SNE ALGORITHM 
Given:  P, T, η, α(t), r 
Inputs:  X  
Initialization: Y, pij 
Objectives: Minimize C with respect to Y, subject to X 
Iterate: for t = 1 to T do 
  compute low dimensional affinities qij 

  compute a gradient of the cost function ∂C/∂y 
  update Y(t) 
 end 

 Output: Y(T)   

 
The heart of the algorithm is a non-linear optimization 

procedure. The algorithm iterates, making sequential 
reductions in the cost function. The learning parameter and 
the momentum function ensure that the algorithm smoothly 
improves over time, without being prematurely trapped in 
local optima. The algorithm is similar to a number of other 
non-linear optimization procedures, including hill-climbing 
algorithms and simulated annealing. Van der Maaten and 
Hinton [5] make explicit comparisons between their 
algorithm and a spring-graph layout. In short[5] make explicit 
comparisons between their algorithm and a spring-graph 
layout. In short, the stiffness of the springs is proportional to 
the degree of mismatch between the low-dimensional and 
high-dimensional affinities, while the force exerted on the 
springs is proportional to the placement of the cases in the 
low-dimensional embedding.  

There are advantages as well as disadvantages to the 
choice of a non-linear visualization technique. The advantage 
of a non-linear visualization is the possibility of vastly 
reducing the needed dimensions to create an effective 
visualization. Another potential advantage is that the 
technique maintains only the local structure of the data. 
Similar objects in the high-dimensional space remain close in 
the reduced space, while the sparse parts of the data are only 
loosely modeled. This may be the most principled way of 
modeling sparse and under-sampled data.  

The disadvantages of a non-linear visualization are three-
fold. The problems are that the model: is no longer 
idempotent, must overcome the crowding problem, and must 
overcome the curse of dimensionality. Furthermore the non-
linear procedure scales less effectively with large data set. 
These problems are discussed below. 

The disadvantage is that the relationship between 
individual records and their encoding in the high-dimensional 
data is essentially lost. The relevant property of linear 
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systems that maintains this relationship is known as 
idempotency. Further, very dissimilar objects may be 
conflated in the visualization, by being placed together in a 
spurious fashion. Another peculiar challenge of high 
dimensional data is the fact that there are many ways objects 
can be proximal in a high dimensional space – this is the so 
called crowding problem. Furthermore data in a high-
dimensional space is increasingly sparse as the 
dimensionality increases. This makes the empirical 
estimation of distances between very distant objects in the 
data set increasingly more difficult.  

The t-SNE algorithm makes further modifications beyond 
the pseudo-code in figure 2. These modifications simplify 
and speed the optimization process, and reduce the crowding 
problem. In the analysis which follows we use a matlab 
implementation of t-SNE [20] running on a standard laptop. 
In the next section we describe the input data (X). The input 
data includes different makes and models of hybrid and 
electric vehicles as cases, and incorporates a number of 
different performance measures for these vehicles as the 
high-dimensional data.  

The output results are a two-dimensional embedding (Y). 
Additional calculation and visualization is applied to the 
outputs. The visualization shows the time of market entry. 
Even if the design space is itself highly non-linear, it can be 
useful to describe locally linear vectors in the space. These 
locally linear vectors are useful in determining the rate and 
direction of technological change, and in understanding the 
boundaries between the distinct regimes of design revealed in 
the data. 
 

V. DATA, ANALYSIS AND RESULTS 
 
In this section the t-SNE method is applied to a hybrid 

electric vehicle and battery electric vehicle case. The case has 
been previously discussed in the literature [21, 22], and 
thereby presents an opportunity to compare the t-SNE method 
with an established technometric approach (TFDEA). Such a 
comparison enables the work to examine the underlying 
assumptions of t-SNE and TFDEA which might otherwise go 
unexamined. This paper will not attempt a cross-validation of 
the methods. Ultimately such validation may require a 
retrospective comparison of the forecast in light of the new 
makes and models in the coming ten years. An additional 
scientific merit of the case lies in the design complexity of 
the vehicles themselves; the case is an opportunity to explore 
in a quantified manner the configurational learning concept 
endorsed by previous researchers [23]. 

The case offers considerable managerial and social 
relevance as well. The emergence of electrical vehicles 
presents a considerable challenge for research coordination 
among the various automotive supply chains. There are 
serious technological uncertainties in the case, although the 
uncertainties may be more configurational in character, than 
in component [24]. The social relevance of the case is also 
high. The penetration of electrical vehicles may dramatically 

change the transportation landscape, further altering the 
trajectory of carbon emissions and economic growth. 
Depending on policies, many first time drivers in the 
emerging world may soon select hybrid or battery vehicles 
rather than conventional fuel vehicles [25]. 

Table 3 clarifies the essential elements of the electric 
vehicle.  The elements are first described, and then their role 
in the respective design configurations is discussed.  The 
battery stores electrical change, and is used in some 
configurations to power the vehicle. The charger enables the 
engine to be recharged from various sources of electrical 
power. The electrical motor converts electricity to motive 
power. The engine burns liquid fuel also to power the vehicle. 
In those vehicles running on conventional fuel the fuel system 
delivers the fuel from tanks to engine. The generator converts 
kinetic energy into electrical change for storage and later use. 
The plug enables the car to be directly charged from the 
electricity mains where desired. In all designs the transaxle 
utilizes kinetic energy from the engine or electric motor to 
propel the vehicle forward. 
 
TABLE 3. ESSENTIAL COMPONENTS OF THE ELECTRIC VEHICLE 

 ICV HEV PHEV BEV 
Engine     
Fuel System     
Charger     
Electric Motor     
Battery     
Generator     
Plug     
Transaxle     

  
The internal combustion vehicle (ICV) uses three of these 

elements – the engine, fuel system and transaxle. A hybrid 
electrical vehicle (HEC) adds three  additional elements – the 
charger, the battery and the electric motor.  A plug-in hybrid 
(PHEV) adds in addition a generator and a plug so that the 
user can choose to recharge from gasoline or the mains. The 
battery electrical vehicle (BEV) actually removes 
components so that the car becomes entirely reliant on 
electricity. The BEV removes engine and fuel system from 
the configuration. See also [21] , appendix A, for a more 
fuller discussion. 

The data, collected by [21], involves 106 HEV, PHEV 
and BEV vehicles introduced in the market from 1997-2012. 
The data set is believed to be comprehensive for all modern 
makes and models up to 2012. The data was sourced from 
archives at SKF corporation and supplemented with freely 
available information on the internet. The data was further 
supplemented by [22] , but this additional information is not 
used here.  

Table 4 describes the variables which are used in the 
analysis. Type is a logical variable encoding whether the 
vehicle is an HEV or PHEV, or a BEV. Weight is the total 
weight of the vehicle in kilograms. Output power is the 
power of the vehicle, measured in Watts. This is contrasted 
with battery capacity, which is the capacity for sustained 
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power output (kilowatt-hours). The acceleration of the 
vehicles are noted, in units equivalent to meters per second 
square. The CO2 emissions of the vehicles are recorded. Units 
for this are in grams of carbon per kilometer. As a convention 
we set the emissions of a battery electric vehicle to zero. In 
reality the sourcing of the electricity in the conventional 
generation system will also create carbon outputs. The 
resultant outputs affect all three vehicle types. Gas mileage is 
in terms of kilometers per liter, while battery range is 
kilometers per fully charged vehicle. These two variables are 
transformed into total driving range (kilometers) by assuming 
a standard tank size, and setting charge to one hundred 
percent on a new battery. This eases comparison across 
designs.  
 

TABLE 4. VARIABLES USED IN THE ANALYSIS 
Variable Units / Explanation 
Type Logical variable; zero for HEV and PHEV, 

one for BEV 
Weight Kilograms 
Output Power Watts 
Battery Capacity kWatt-hours 
Acceleration Kilometer/hr/s 
CO2 Grams / kilometer; set to zero for BEV 
Gas Mileage Kilometers / liter 
Electric Range Kilometers / charge 

 
The variables are in varied units ranging from kilometers 

to kilograms. We therefore choose to rescale the units. This is 
accomplished by rank-sorting the various makes and models, 
replacing the observed value with its rank. Identical values 
are coded at the average rank across all vehicles with the 
same performance score. The algorithm is robust to 
differences in unit scaling, but the scaling alleviates a 
potential threat to validity in the output. The algorithm is also 
dealing with mixed data types – both rank ordered as well as 
logical. Our hypothesis is that the algorithm can gracefully 
manage a variety of different data types. The local structure 
of the data enables an appropriate reweighting of the logical 
and ordinal variables. The data used in the case an 
opportunity to test this hypothesis. 

The data is submitted to a t-SNE algorithm in matlab [20]. 
The resultant output is rapid and robust to multiple re-
initialization. The raw output of the data is a matrix indexed 
by cases (on the rows), and embedded in a lower dimensional 
space (on the columns). The embedding is a ratio-scaled,  
two-dimensional vector for each make and model in the 
sample. The resultant output is readily visualized as a scatter 
plot (figure 2).  As usual the axes of such plots are not readily 
interpretable given the varied data measures used as input. 

The scatter plot is supplemented with a third dimension, 
the date of market availability of the vehicle. This data was 
not used in the analysis, since we believe the date of release 
is not a relevant variable for comparison of the vehicles. 
Nonetheless the overlay of the date of release adds an 
additional element in understanding the dynamics of change 
in this case. Cooler colors are used to represent the earliest 

vehicles (c. 1998) while warm colors are used to represent the 
newest vehicles (c. 2012). Interpreting the plot, similar 
designs are placed similarly together in the plot. Dissimilar 
designs are placed far apart. Unusual designs are shown as 
isolated in the resultant plot.  There are noticeable groupings 
of designs over time, despite that time is exogeneous to the 
model. This suggests that there are technological dynamics at 
work in the case. 

 

 
Figure 2. Placement of the Make and Models in a Scatter Plot 

 
Figure 3 further labels the points by their design 

configuration – HEV, PHEV and EV. Each of these vehicle 
configurations occupies a different part of the space. Hybrid 
vehicles are located at the upper left, plug-in hybrids in the 
middle of the space, and pure electrical vehicles at the bottom 
right.  No normative interpretation can be attached to the 
axes. Figure 3 provides additional confirmation that the 
different design configurations are captured in the reduced 
embedding. 

 
Figure 3. Different Configurations in the Design Space 

  
We now take a closer look at the technological frontiers 

and outliers in the data, further annotating the figure to make 
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these clear (figure 4).  Two fronts are readily apparent – one 
in the space of the hybrid vehicles, and another in the space 
of the battery vehicles. The plug-in hybrids occupy an 
isolated space in the center. It is clear that new entries to the 
market are crowding along both fronts. It is further clear that 
there are many vehicles along the front, suggesting a range of 
viable designs in the marketplace.  
 

 
Figure 4. Frontiers in the Design Space 

 
Given these results we now take a closer look at the 

implied dynamics of the space. These trajectories (figure 5) 
are not explicitly modelled. Nonetheless a clear direction of 
change can be seen for both vehicle configurations. On the 
hybrid vehicle side the design initially headed north or north 
east from a set of initial designs in 1998-199. A dramatic shift 
in technological emphasis happened around 2006 (incidently 
when battery electrical vehicles became readily available in 
the market. Design configurations then systematically turned 
towards the south-east, where a set of plug-in hybrid entries 
were already available. 

 

 
Figure 5. Trajectories in the Design Space 

On the battery electric vehicle side, designs have steadily 
radiated away from an initial set of designs pioneered in 
2004. The battery electrical designs are growing closer over 
time to the plug-in hybrids, and the fleet of hybrid electrical 
vehicles currently on the market.  The plug-in hybrid designs 
are very distinctive. Given the current rate of change the rest 
of the market is likely to converge on comparable designs, 
but not until the 2020 time frames.  Given the unusual design 
characteristics of these vehicles, and the apparent 
convergence of the market, we now take a closer look at two 
of these PHEV vehicles. 

Both of the vehicles are Chinese makes. The F3DM 
(center isolate, upper right) is produced by the BYD Auto 
Company. The Besturn B50 (center isolate, lower left) is 
manufactured by the FAW Group (“First Automotive 
Works”). These companies are respectively the sixth and 
fourth largest automotive manufacturers in China. Both are 
attempting to aggressively expand into electrical vehicles 
given a strong domestic market and a perceived gap created 
by other western and Asian entrants. Note that neither the 
F3DM nor the Besturn B50 are championed as high-
performance or high-cost-performance vehicles, despite their 
unusual characteristics. 

We now turn to a discussion of performance trade-offs 
and of gradients of performance improvement. As discussed 
previously the local embedding is non-linear. Local 
linearization of the embedding is possible by drawing line 
segments of sufficiently limited length. Each line segment in 
the graph potentially represents a different weighting on the 
underlying variables. (The underlying variables are described 
in table 4). Of interest are technological trade-offs, which 
show a range of potential design swaps which are currently 
viable both technologically and economically in the market 
place.  Two design trade-offs are apparent.  One is the trade-
off of HEV vehicles, shown at left. The second is the trade-
off of electrical vehicles, shown at right. The fact that along 
each trade-off there are a variety of makes and models 
suggest widespread market viability for a range of designs. 

 
Figure 6. Performance Trade-offs 
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Also of interest are performance gradients. Performance 
gradients are the leading direction of technical change.  The 
change is anticipated, but not yet expressed in many actual 
designs. As noted the t-SNE technique is not extrapolative, so 
we cannot with precision describe the exact gradient. It is 
nonetheless very interesting to examine this gradient, at least 
as a thought experiment (figure 7).  

 
Figure 7. Performance Gradient 

 
One gradient of change is shown in figure 7. This 

particular gradient is already populated with multiple novel 
designs, and is therefore selected for further examination. The 
approximation process involves selecting several makes and 
models on or near the gradient. Each model, if not already on 
the gradient, is mapped in its closest approach to the gradient. 
The gradient itself parameterized in terms of distance in the 
embedding. One make or model may be set arbitrarily to zero 
for this purpose, and other points scored according to their 
distances. Then a regression on technological performance by 
distance on the gradient may be performed. Similarly, the rate 
of technological change can be approximated by regressing 
the entry date of each of the selected makes and models with 
their location along the gradient. 

Table 5 shows the result of one such analysis of the 
gradient. The procedure as described affords an estimate of 
where the average performances of vehicles will sit at an 
arbitrary date in time. A date of 2018 is selected for reference 
purposes. Since the two design configurations are 
converging, increasing gains in performance relative to one 
configuration are decreasing gains when compared to the 

other configuration. So for instance the forecasted vehicle in 
2018 will be heavier, and have a greater battery capacity than 
the selected current design. On the other hand, relative to 
modern electrical vehicles the weight will be lighter, and the 
battery capacity will be lesser. The performance parameters 
of the 2018 vehicle are shown, and the respective units 
described. 

Table 5 shows the resultant conclusions for the other four 
performance parameters considered. It is important to note 
that EV vehicles cannot, in their purely electric configuration, 
actually increase in CO2 output and so the resultant 
performance change is marked as stable. This raises the issue 
that there may be regions in the embedding which cannot be 
reached without either logical contradictions, or potential 
violations of physical law. Table 5 also shows the rate of 
change (whether positive or negative). Of particular note are 
the rapid reductions in CO2 output relative to the standard 
HEV designs. Also interesting are the rapid changes in 
acceleration – increases relative to the selected HEV norm, 
but decreases relative to the selected EV norm. 

A possible market scenario for 2018 is shown (figure 8). 
Given the previous changes in the design trajectories it seems 
entirely likely that the HEV and EV technologies will merge 
by 2018. The current range of market designs are already 
moderately constrained – whether by technology or economic 
realities is uncertain. We would expect this natural variation 
of market designs to continue into 2018. 

Nonetheless the underlying technologies will continue to 
evolve, and there will still be a broad range of different 
possible market niches possible. This is expressed by the 
straight line shown on figure 8, which represents a gradient of 
technological performance. The gradient itself is not 
necessarily linear although it can be represented as linear in 
this graph. A range of possible vehicle designs are shown 
along this gradient, expressed as open circles. 

The gradient might be further segmented – for instance 
into two niches.  The upper niche is almost already occupied 
by the F3DM vehicle as discussed earlier.  It may represent a 
low-cost vehicle most suitable for mass production. The 
lower niche is almost already occupied by the B50, although 
rather more technological change towards electrical vehicles 
might be expected here. This segment might represent more 
expensive or elite vehicles for the upper class, given the 
current customer segment for Besturn.  

 
TABLE 5. LOCAL LINEAR APPROXIMATION OF THE GRADIENT 

Performance 
Indicator 

HEV EV Rate of Change 2018 Estimates Units 

Weight Increasing Decreasing 0.3% / year 1669 Kg 
Output Power Decreasing Increasing 0.8% / year 121 kW 
Battery Capacity Increasing Decreasing 1.8% / year 31 kW-hr 
Acceleration Rate Increasing Decreasing 2.1% / year 11 km/hr/s 
CO2 Output Decreasing Stable 3.7% / year 60 g/km 
Functional Range Decreasing Increasing 1.4% / year 59 km 
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Figure 8. Possible Future Market Scenarios for 2018 

 
In summary several interesting conclusions emerge from 

the analysis. The t-SNE successfully addresses distinct data 
types producing a coherent embedding of the technology. The 
embedding shows face validity – separating distinct design 
configurations in the embedding, and demonstrating the 
presence of rapid technological change in the time period 
studied. The diagram revealed fronts and trade-offs, and a 
gradient of rapid technological change which may presage 
continuing reductions in CO2 output.  In the final section of 
the paper we reflect further on the method and the 
framework. Limitations are acknowledge, and opportunities 
for future research are noted. 
 

VI. REFLECTION AND CONCLUSION 
 

The principal result of the visualization exercise is that 
plug-in hybrid electrical vehicles (PHEV) are becoming the 
dominant design in the marketplace. Existing hybrid 
electrical vehicles are adding increasingly powerful batteries, 
and slowly shedding their reliance on internal combustion 
engines. The F3DM is particularly noteworthy in the analysis 
as an isolated design which will increasingly be duplicated by 
others. PHEVs are not new of course, but the trend towards 
these designs has been obscured by the complexity of the 
space of vehicle attributes. 

Another result of the visualization exercise is the presence 
of eroding technological goals. In this technology segment, a 
race towards uniformly superior technological attributes does 
not seem to be present. Electrical vehicles are becoming less 
able to accelerate over time. In return however, the vehicles 
are growing lighter weight, more powerful, and able to cruise 
for longer distances. 

The implications of the model are that world policies for 
carbon reduction are succeeding. One of the most apparent 
directions of vectors of change is in CO2 reduction; the 
newest designs are rapidly shedding their output of carbon. 
This suggests that current regulations for fleet reduction have 
been very successful, and should be continued as long as CO2 

reduction is an important goal for policy. More nuance could 
be applied to the model by accounting for the intended 
market for each make and model. The differential effects of 
polices by region might thereby be better evaluated. 

The t-SNE model contrasts with prior analyses using 
TFDEA.Tudorie [21] Tudorie [21] analyzed the current data 
set using TFDEA. The author concluded that there would be 
no absolute reductions in overall performance improvement. 
This contrasts with the current model where, as noted, there 
are eroding technological performance goals. The model by 
Tudorie [21] also is far less optimistic about the potential for 
future reductions in carbon emission. A similar comparison 
can be made with Jahromi et al. [22] who also analyzed a 
modified version of this data set using TFDEA. The 
corresponding TFDEA model anticipates much higher rates 
of technological change over-all, while being relatively 
conservative about the prospects of improvements in fuel 
economy. 

Both sets of model differences, we suggest, stem from the 
assumption of technological frontiers used in the TFDEA 
model. Further exploration is needed to determine which of 
the two methods is most valid for this data. The current 
model shows relatively many makes and models on a front of 
new activity. The front however, is not a frontier, since it 
does not depict an increasing gradient of technological 
performance. 

The patterns of technological change in this example were 
more varied than expected. The framework used suggested 
only five patterns of change. These patterns were derived 
from the theory of reverse salients, technological lock-ins, 
and radical innovation. This model instead revealed two 
unexpected patterns – technological convergence, and a phase 
change. Both patterns have their antecedents in the literature. 
Technological convergence is reflected by the fronts of 
activity in the HEV and BEV industry, and the apparent 
momentum towards a middle ground. The existing literature 
on technological convergence has largely spoken about 
convergence in industry sectors, rather than convergence in 
technological design.Lee [26] Lee [26] describes the 
convergence in the telecommunications and computer 
networking industry. Gambardella and Torrisi [27] explicitly 
contrast convergence in technological design with 
convergence in the marketplace, using the microelectronics 
sector as a case. 

The data suggest that the trajectory of hybrid electrical 
vehicles dramatically changed with the advent of battery 
electrical vehicles. The presence of an alternative paradigm 
on the market apparently caused a dramatic shift in design 
priorities on the part of the hybrid electric manufacturers. 
Speculatively, this shift may have occurred because of the 
ease of sourcing new vehicle parts, and because of a shift in 
consumer expectations regarding price and performance. 
There has been relatively little research on the matter, at least 
under the label of “phase change.” Nonetheless Peine [23] 
describes “configurational learning,” a process by which 
developers change and adapt technological architectures. 
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Murmann and Frenken [28] describe industrial changes 
ultimately leading to dominant designs. 

Two of these articles in particular illustrate the complex 
relationship between technological dominance and industrial 
predominance [27, 28].[27, 28]. As previously noted the 
technometric literature distinguishes studies at the level of 
industries, as well as individual technologies. This enables us 
to take a closer look at the appropriate interpretation and use 
of these forecasts. Is the intention to describe the best-in-class 
technologies in a given year? Or instead, is it more 
appropriate to describe the technology is which is likely to 
dominate the market? This answer might differ according to 
the purposes of the study. Studies for systems acquisition 
purposes, or studies for analyzing technological disruption, 
will likely have the need to understand the high performance 
frontier. Studies for the purpose of technological coordination 
will be more concerned with the dominant design in an 
industry. 

The case demonstrated several advantages for using an 
explicitly non-linear visualization technique. The technique 
afforded a local metric of change. A given line segment on 
the plot is structurally different from others on the same axis. 
This provides a needed degree of freedom in modeling the 
variety of directions of change in the data. For instance, the 
non-linearities in the model permit easy visualization of 
sudden bursts of growth and change. 

There are limitations to the work as well, both inherent in 
the method as well as in the case design. The method is 
inherently inductive. Arguably more structuring of the input 
data is needed. The comparison of different designs in a 
single design space may have been naïve and may invite false 
comparisons. Acknowledging limitations in the case design, 
this was only a single case comparison. More extended 
application across multiple data sets are needed, and more 
rigorous cross-validation effort with TFDEA and other 
methods is needed. The desire to catalog patterns of 
technological change will undoubtedly require many more 
examples, with extended corroboration from the literature, to 
produce a workable framework. 

A topic for future research would be modeling the 
swarming of new designs. The t-SNE model invites 
speculation about the future direction of technological 
change. Nonetheless it is not an extrapolative model. An 
approach using stochastic differential equations may permit a 
rigorous estimation of the numbers and varieties of designs 
likely to be manifested across the design space. The equations 
could possibly be corroborated with a maximum likelihood 
approach to calibrate the location of previous designs. Then, 
these patterns of growth could be used as an extrapolative 
exercise to determine likely future scenarios. 

The principal contribution of this paper is to apply a novel 
non-linear visualization technique to technometrics. More 
broadly the technique may have relevant for a range of 
technology and innovation management questions including 
systems acquisition, transitions management, and research 
coordination. The paper also isolated a particular strand of 

literature on the dynamics of technological change and 
design, and corroborated the literature with a framework 
which can be tested using techniques of modelling and 
design. Finally, the paper contributed to the monitoring of 
advances in the hybrid electrical vehicle industry, pointing 
out a potential convergence not previously noted in 
technometrics. 
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APPENDIX A. ELEMENTS OF THE ALGORITHM 
 
Scalars 
i,j    iterators over elements in a vector, n 
t    iterator, algorithm step 
n    data points 
q    dimensionality of the full data 
r    reduced dimensionality of the embedding 
P    algorithm, perplexity 
T    algorithm, number of iterations 
η    algorithm, learning p |    high-dimensional affinity between case i and j, non-reflexive p     high-dimensional affinity between case i and j, reflexive q     low-dimensional affinity between case i and j, reflexive 
 
Functions 
α (t)    momentum, as a function of time 
C(p,q)    cost, as a function of affinities 
 
Vectors ݔ = ,ଵݔ} ,ଶݔ … , ݕ }  data point for a given case iݔ = ,ଵݕ} ,ଶݕ … ,  }  data point for a given case iݕ
 
Matrices ܺ = ,ଵݔ} ,ଶݔ … ,  }  data set, dimensioned n cases and q variablesݔ
 
Tensors ܻ(ܶ) = ,ଵݕ} ,ଶݕ … ,  }  reduced representation of the data set as a function of iterationݕ
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