
Improving Scenario Discovery by Bagging Random Boxes 
 

J.H. Kwakkel, S.C. Cunningham, E. Pruyt 
Delft University of Technology, Faculty of Technology, Policy and Management, Delft, The Netherlands 

 
Abstract--Scenario discovery is a novel participatory model-

based approach to scenario development in the presence of deep 
uncertainty. Scenario discovery relies on the use of statistical 
machine-learning algorithms. The most frequently used 
algorithm is the Patient Rule Induction Method. This algorithm 
identifies regions in the uncertain model input space that are 
highly predictive of producing model outcomes that are of 
interest. To identify these regions, PRIM in essence uses a hill 
climbing optimization procedure. This suggests that PRIM can 
suffer from the usual defects of hill climbing optimization 
algorithms, including local optima, plateaus, and ridges and 
alleys. In case of PRIM, these problems are even more 
pronounced when dealing with heterogeneously typed data. 
Drawing inspiration from machine learning research on random 
forests, we present an improved version of PRIM. This 
improved version is based on the idea of performing multiple 
PRIM analyses based on randomly selected features and 
combining these results using a bagging technique. The efficacy 
of the approach is demonstrated through a case study of 
scenario discovery for the transition of the European energy 
system towards more sustainable functioning, focusing on 
identifying scenarios where the transition fails.  
 

I. INTRODUCTION 
 

Scenario discovery is a relatively novel approach for 
addressing the challenges of characterizing and 
communicating deep uncertainty associated with simulation 
models [1]. The basic idea is that the consequences of the 
various deep uncertainties associated with a simulation model 
are systematically explored through conducting series of 
computational experiments [2] and that the resulting data set 
is analyzed to identify regions in the uncertainty space that 
are of interest [3, 4]. These identified regions can 
subsequently be communicated through e.g. narratives to the 
decisionmakers and other actors involved. Scenario discovery 
is an analytical process which can be embedded in a 
participatory process supporting ”deliberation with 
analysis”[5].  

A motivation for the use of scenario discovery is that the 
available literature on evaluating scenario studies has found 
that scenario development is difficult if the involved actors 
have diverging interests and worldviews [3, 6]. Another 
shortcoming identified in this literature is that scenario 
development processes have a tendency to overlook 
surprising developments and discontinuities [7-9].  

Scenario discovery is an approach that offers support for 
decisionmaking under deep uncertainty. Deep uncertainty is 
encountered when the different parties to a decision do not 
know or cannot agree on the system model that relates 
consequences to actions and uncertain model inputs [10], or 
when decisions are adapted over time [11]. In these cases, it 
is possible to enumerate the possibilities (e.g. sets of model 

inputs, alternative relationships inside a model, etc.), without 
ranking these possibilities in terms of perceived likelihood or 
assigning probabilities to the different possibilities [12].  

Although scenario discovery can be applied on its own [4, 
13, 14], it is also a key step in Robust Decision Making 
(RDM) [1, 15-17]. RDM aims at supporting the design of 
robust policies. That is, policies that perform satisfactorily 
across a very large ensemble of future worlds. In this context, 
scenario discovery is used to identify the combination of 
uncertainties under which a candidate policy performs poorly, 
allowing for the iterative improvement of this policy. This 
particular use of scenario discovery suggests that it could also 
be used in other planning approaches that design plans based 
on an analysis of the conditions under which a plan fails to 
meet its goals [18].  

Currently, the main statistical rule induction algorithm 
used for scenario discovery is the Patient Rule Induction 
Method (PRIM) [19], although other algorithms, such as 
Classification and Regression Trees (CART) [20], are 
sometimes used [14, 21]. The main merit of PRIM is its 
interactive usage, which helps to overcome its main weakness 
of restricting too many dimensions. CART has a tendency to 
generate many and asymmetric boxes which are difficult to 
interpret. However, CART can be used for multiclass 
problems, while PRIM cannot [14]. PRIM can be used for 
data analytic questions, where the analyst tries to find 
combinations of values for input variables that result in 
similar characteristic values for the outcome variables. 
Specifically, one seeks a set of subspaces of the model input 
space within which the values of a single output variable are 
considerably different from its average values over the entire 
model input space. PRIM describes these subspaces in the 
form of ‘boxes’ of the model input space. To identify these 
boxes, PRIM uses a lenient or patient hill climbing 
optimization procedure. The most frequently employed 
implementation of PRIM that is being used for scenario 
discovery is the one provided by Bryant in the scenario 
discovery toolkit written in R [22]. 

There are two key concerns in scenario discovery. In no 
particular order, the first concern is the interpretability of the 
results. That is, ideally the subspaces identified through 
PRIM should be composed of only a small subset of the 
uncertainties considered. If the number of uncertainties that 
jointly define the subspace is too large, interpretation of the 
results becomes challenging for the analyst [3]. But, perhaps 
even more importantly, communicating such results to the 
stakeholders involved in the process becomes substantially 
more challenging [23]. The second concern is that the 
uncertainties in the subset should be significant. That is, 
PRIM should not include spurious uncertainties in the 
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definition of the identified subspace. This concern is 
particularly important given that PRIM uses a lenient hill 
climbing optimization procedure for finding the subspaces. 
As such, PRIM suffers from the usual defects associated with 
hill climbing, namely local optima, plateaus, and ridges and 
alleys.  

In current practice, the interpretability concern is 
addressed primarily by performing PRIM in an interactive 
manner. By keeping track of the route followed by the lenient 
hill climbing optimization procedure used in PRIM, the so-
called peeling trajectory, a manual inspection can reveal how 
the number of uncertainties that define the subspace varies as 
a function of density (precision) and coverage (recall). This 
allows for making a judgment call by the analyst balancing 
interpretability, coverage, and density. To avoid the inclusion 
of spurious uncertainties in the subset, Bryant and Lempert 
[3] propose a resampling procedure and a quasi-p-values test. 
This resampling test assesses how often essentially the same 
subspace is found by running PRIM on randomly selected 
subsets of the data. The quasi-p-value test is an estimate of 
the likelihood that a given uncertainty is included in the 
definition of the subspace purely by chance.  

In this paper, we investigate an alternative approach that 
addresses both concerns simultaneously. This alternative 
approach is inspired by the extensive work that has been done 
with CART and related classification tree algorithms. The 
basic idea behind this alternative approach is to perform 
multiple runs of the PRIM algorithm based on randomly 
selected uncertainties [24] and combining these results using 
a bagging technique [25]. The idea of random feature 
selection is that all the data is used, but rather than including 
all uncertainties as candidate dimensions, only a randomly 
selected subset is used. So, instead of repeatedly running 
PRIM on randomly selected data as currently done, this 
procedure randomly selects the uncertainties instead. Bagging 
is an established approach in machine learning for combining 
multiple versions of a predictor into an aggregate predictor 
[25]. The inspiration for this alternative approach comes from 
[24], who combines random feature selection and bagging 
with CART [20], resulting in the by now well established 
random forest machine learning technique.  

To assess the efficacy of the proposed alternative 
approach, we perform a case study. Given that as of yet no 
established bench mark cases are available for comparing 
alternative scenario discovery procedures, we use a case we 
have been working on for other purposes. The case is about 
the transition of the European energy system towards more 
sustainable functioning. Here, we focus on identifying 
scenarios where the transition fails. We apply both the 
standard scenario discovery procedure and the alternative 
approach to this case and compare the results.  

The remainder of this paper is structured accordingly. In 
Section 2, we outline the method in more detail. Section 3 
introduces the case. Section 4 contains the results. We discuss 
the results in Section 5. Section 6 contains the conclusions.  

 

II. METHOD 
 

In this section, we first introduce PRIM and Random 
Forest, followed by an outline of how we combine these two 
into a more sophisticated version of PRIM based on random 
feature selection and bagging. 
  
A. PRIM 

Before offering a detailed mathematical exposition of the 
algorithm, we first offer a high level visual outline of the 
algorithm. Fig. 1 offers this visual explanation. The aim of 
PRIM is to find a rectangular box that has a high 
concentration of points of interest (denoted in red). We start 
with a box that contains all the data points (top left axes in 
Fig. 1). Next, we consider removing a small slice  of data 
along the top and bottom, and left and right ((the grey shaded 
areas in axes in the second and third row in Fig. 1). This 
gives four candidate boxes. PRIM will select the one that 
results in the most increase on the objective function, which 
is typically the mean of the data remaining. In this particular 
example, removing along the top removes more data points 
than removing data from the right, so removing from the top 
is a better choice. This results in a new box ܤ௟ାଵ(shown in the 
bottom row on the left). Now the procedure is repeated until a 
user specified stopping condition is met.  

In the mathematical description of PRIM below, we 
follow the exposition as given by [19]. Given a learning set ℒ = {x୧, y୧}ଵ୒ where ݕ௜ is some output variable, and S୨ is the 
set of all possible values for the input variable x୨. 
௜ݔ} (1) ∈  ௝ܵ}௝ୀଵ௡   
 S୨ could be real values, discrete values, or categorical values. 
So, the entire input domain ܵ can be represented by the ݊-
dimensional product space 
(2) =ܵ ଵܵ  × ܵଶ × ⋯× ܵ௡ 

 

 
The goal of PRIM is to find a subset ܴ of the input 

domain ܵ, so ܴ ⊂ ܵ, for which 
(3) ݂ோ̅ = (ݔ)௫∈ோ݂݁ݒܽ = ׬  ׬௫∈ோݔ݀(ݔ)݌(ݔ)݂ ௫∈ோݔ݀(ݔ)݌ ≪ ݂̅  

 
where ݂̅ is the average over the entire input space: 
(4) ݂̅ = න   ݔ݀(ݔ)݌(ݔ)݂

 
For interpretability, one would like to specify the subset ܴ 

with simple logical conditions, or rules, based on the values 
of the individual input variables {ݔ௝}ଵ௡. That is, the subset ܴ is 
the union of a set of simple sub regions {ܤ௞}ଵ௄. ܤ௞ is a box ݇ 
within the entire input domain ܵ: 
௞ܤ (5) = ଵ௞ݏ × ଶ௞ݏ × ⋯ × ௡௞ݏ  
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Fig. 1. Visual explanation of PRIM algorithm. 
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where ݏ௝௞ is a subset of the possible values of input variable ݔ௝; so {ݏ௝௞ ⊆  ௝ܵ}ଵ௡. A given box ܤ௞is than described by the 
intersection of the subsets of values of each input variables ݔ௝. 
ݔ (6)  ∈ ௞ܤ = ሩ(௡

௝ୀଵ ௝ݔ ∈  (௝௞ݏ
 

 
in case of real or discretely valued input variables, the subsets 
are contiguous sub-intervals: 
௝௞ݏ (7)  = ,௝௞ିݐ] ௝௞ାݐ ]  
 
in case of categorical valued input variables, ݏ௝௞ is any 
possible subset of the categories ௝ܵ: 
௝௞ݏ (8)  ⊂ ௝ܵ  
 

It is possible that the subset or sub interval ݏ௝௞ for any 
variable is equal to the entire set or interval ௝ܵ, so ݏ௝௞ = ௝ܵ, in 
which case this variable ݔ௝ ∈ ௝ܵ can be omitted from the box 
definition. The box definition then becomes 
ݔ (9)  ∈ ௞ܤ = ሩ ൫ݔ௝ ∈ ௝௞൯௦ೕೖஷௌೕݏ   

 
The input variables ݔ௝ for which ݏ௝௞ ≠ ௝ܵ define the box ܤ௞. 

In order to find a given box ܤ௞, PRIM uses a lenient hill 
climbing optimization procedure. Following [19], we 
consider here only the maximization case. The objective 
function of this optimization procedure in the default version 
of PRIM then becomes 
(10) ݂஻̅ೖ = ׬  ׬௫∈஻ೖݔ݀(ݔ)݌(ݔ)݂ ௫∈஻ೖݔ݀(ݔ)݌  

 

 
PRIM uses a lenient optimization procedures based on 

recursive top-down peeling, followed by bottom-up recursive 
pasting. An intuitive understanding of peeling is that 
recursively a small slice from the top or bottom of a given 
box is removed. Pasting is the converse procedure, where 
recursively a small slice is added back to the box. As also 
shown in Fig. 1, the optimization procedure starts with an 
initial box ܤ௟ that covers all the data. Iteratively a small sub-
box ܾ within ܤ௟ is removed. The algorithm first identifies all 
candidate boxes ௝ܾ  which are eligible for removal, and in the 
version presented by Friedman and Fisher [19] choses the 
box ܾ∗ that has the largest output mean value for the new box 
resulting from removing ܾ from ܤ. 
(11) ܾ∗ = arg max௕∈஼(௕) ௜ݔ|௜ݕ] ݁ݒܽ ∈   [ܤ

 
Where ܥ(ܾ) is the class of sub-boxes ௝ܾ eligible for removal. 
Given ܾ∗, the box ܤ is updated: 
௟ାଵܤ (12) ⟵ ௟ܤ − ܾ∗  
 

Where the index ݈ denotes the order of the box ܤ in the 
peeling trajectory (see below). This peeling procedure is 
repeated recursively on each new smaller box until the mass 
of the box ߚ஻ೖ falls below a user specified threshold. The 
mass of the box is simply the number of data points inside the 
box ܤ௞ divided by the total number of data points ܰ. This 
threshold is a user defined parameter, and is in scenario 
discovery typically selected through trial and error.  
஻ೖߚ (13) = 1ܰ ෍ ௜ݔ)1 ∈ (௞ܤ ≤ ଴ேߚ

௜ୀଵ  
 

 
The results of this recursive peeling is a succession of 

boxes of boxes, where each box is slightly smaller than the 
previous, has a slightly smaller mass than the previous, and 
shows an increase on the objective function. This succession 
of boxes is called a peeling trajectory in scenario discovery: 
,ത௟ݕ} (14)   ௟}ଵ௅ߚ
 

Each candidate sub-box in ܥ(ܾ) is defined by a single 
input variable ݔ௝. In case of a real valued or discrete valued 
input variable, this variable provides two candidate sub-boxes ௝ܾି and ௝ܾା. These two candidate boxes border respectively 
the upper and lower boundary of the current box ܤ on the ݆-th 
input: 
(15) ௝ܾି = ൛ݔ|ݔ௝ < ௝(ఈ)ൟ௝ܾାݔ = ൛ݔ|ݔ௝ <  ௝(ଵିఈ)ൟݔ

 

 
where ݔ௝(ఈ) is the ߙ-quantile of the values of ݔ௝ within the 
current box, and ݔ௝(ଵିఈ) is the (1 − is a user-defined parameter and typically quite small (0.05 ߙ quantile. The value for-(ߙ − 0.1). This parameter controls the leniency of the 
peeling for real valued and discrete valued data. 

In case of a categorical valued input variable, this variable 
provides a number of candidate boxes. This number is equal 
to the cardinality of the set of categories (i.e. ห ௝ܵ௞ห) remaining 
in definition of the box ܤ minus one. So, in case of a 
categorical variable ݔ௝ where ห ௝ܵ௞ห = 5, the number of 
candidate boxes contributed by this categorical variable will 
be 4. 
(16) ௝ܾ௠ = ൛ݔหݔ௝ = ,௝௠ൟݏ ௝௠ݏ ∈ ௝ܵ௞  
 

As indicated, Friedman and Fisher [19] select the 
candidate sub-box ܾ∗ that has the maximum average for ܤ − ܾ∗. However, in case of heterogeneously typed data, this 
criterion is flawed. The average for a candidate box ௝ܾ  in case 
of real valued variable will typically be based on more data 
points than for a categorical variable. To correct for this, the 
mass has to be taken into consideration as well. Friedman and 
Fisher [19] therefore suggest a more lenient criterion that 
could be used instead: 
(17) ܾ∗ = arg max௕∈஼(௕) ௟ݔ|௟ݕ]݁ݒܽ ∈ ௟ܤ − ܾ] − ௟ݔ|௟ݕ]݁ݒܽ  ∈ ஻೗ߚ[௟ܤ − ஻೗ି௕ߚ   
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where the index ݈ specifies the current box ܤ௟ in the peeling 
trajectory, and ܤ௟ − ܾ is the box resulting from the removal 
of candidate sub-box ܾ from ܤ௟. So, the more lenient criterion 
is to select a sub-box ܾ∗ by looking at the change in the 
average divided by the change in the mass. In the case, this 
more lenient criterion is used.  
 
B. Random Forest 

Random forest is a well-established machine learning 
technique that can be used for both classification and 
regression. It is an ensemble technique, where a set of simpler 
learners, classification and regression trees (CART), are 
combined to produce a single much more powerful classifier. 
The individual trees in a forest are generated using the CART 
algorithm [20], and are trained on a random subset of the data 
and a random subset of features. The individual trees are 
combined through bootstrap aggregating, or bagging [25]. 
Below we briefly discuss each of these three components.  
 
CART 

Classification and regression tree (CART) [20] is an 
example of a decision tree learning algorithms. Other 
examples include ID3 [26], C4.5 [27], and C5.0 The aim in 
decision tree learning in general is to create a classifier that 
predicts the value of a target variable based on a set of input 
variables. In case of decision tree learning, this takes the form 
of a decision tree where at each node a given input variable is 
used to split the data set. CART can be used for both 
classification and regression problems. In case of regression 
problems, the tree is used to predict the value of the outcome 
of interest as a function of the set of input variables. In case 
of classification problems, the tree is used to predict class 
membership as a function of the set of input variables. CART 
differs from ID3 in that it uses gini-impurity instead of 
entropy as a basis for selecting which variable to split on. 
Through recursive partitioning, CART produces a set of 
disjoint rules that jointly cover the entire input space. Both 
CART and PRIM are rule induction procedures, but in 
contrast to PRIM, CART and other decision tree learners are 
greedy procedures. 

 
Random feature selection 

Drawing inspiration from the work of Dietterich [28] on 
random split selection, the work of Ho [29] on the ‘random 
subspace’ technique, and the work of Amit and German [30] 
who build decision trees by randomly selecting a subset of 
features at each split in the three, Breiman [24] proposes to 
build classification trees based on randomly selected features. 
Adopting the notation used for describing PRIM, the idea is 
that at each split in the tree, a subset of ݇ variables ݏ௞ is 
randomly selected, so {ݏ௞ ∈ ܵ}௞ୀଵ௞ ⊂  ܵ, and the best split 
from this subset is used. 
 
Bagging 

Bagging or bootstrap aggregating is a technique first 
proposed by Breiman [25] for generating several alternative 

versions of a predictor and then combining them into a single 
aggregate predictor. In the typically case, a learning set ℒ is 
used to train a predictor ߮ (so ߮(ݔ, ℒ)). So in case of PRIM, 
a given box ܤ௞ is such a predictor ߮. Bootstrap aggregating is 
then a procedure for generating repeated bootstrap samples {ℒ(஻)} from ℒ and train a predictor on each of these samples: {߮(ݔ, ℒ(஻))}. The bootstrap samples are generated by 
drawing at random, but with replacement, from ℒ. Next these 
individual predictors have to be combined to create the 
aggregate predictor ߮஻. In case of numerical values, one 
takes the average value over the predictors 
(18) ߮஻(ݔ) = ave஻߮(ݔ, ℒ(஻))  
 
while in case of classification, the individual classifiers vote 
to arrive at ߮஻(ݔ). Bagging can be applied in combination 
with any predictor. In case of random forest, CART is used 
for the individual predictors ߮. 
 
Interpretability 

Random forests are known to be very effective classifiers, 
but the exact rules that are being used in classification are 
impenetrable. In the context of scenario discovery, 
interpretability is key. Breiman [24] offers one approach for 
addressing the interpretability problem. He suggests to use 
the resulting ensemble for calculating the input variable 
importance. This metric can be calculated by taking the out-
off-bag data, randomly permute the ݉-th input variable, and 
then run it through the associated set of rules. This gives a set 
of predictions for class membership, which by comparing it 
with the true label gives a misclassification rate. This 
misclassification rate is the “percent increase in 
misclassification rate as compared to the out-of-bag rate” 
[24]. Based on this input variable importance score, a new 
classifier can be made which uses only the ݊ most important 
input variables, or, slightly more sophisticated, one generates 
a series of boxes where step-wise the ݊-th most important 
input variable is added to the training data.  

 
C. Bagging random boxes 

Having presented both PRIM and random forest, we can 
now outline the modified PRIM procedure we are proposing. 
1. Take a random bootstrap sample ℒ௞ from ℒ, as discussed 

under bagging 
2. Select a random subset of variables on which to train 

PRIM; given that PRIM is a patient rather than a greedy 
strategy, we use random feature selection prior to training, 
rather than at each successive step in the peeling 
procedure.  

3. Train PRIM following the procedure outlined in Section 0 
with a the more lenient objective function 

4. Asses the quality of the resulting box ܤ௞ using ℒ (see 
Breiman [25] on using the entire learning set ℒ as a test 
set) 
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The outlined procedure will result in a single box ܤ௞. 
Following the bagging procedure, a number of these boxes 
can be generated, and used as an aggregate predictor. 
However, this aggregate predictor will have a black box 
character. That is, it is not trivial to specify the classification 
rules used by the aggregate predictor. Given the importance 
of interpretability of the results of applying PRIM in a 
scenario discovery context, this is a problem.  

An alternative to calculating the importance of features is 
suggested by Friedman and Fisher [19]. In this approach, one 
would take the peeling trajectories of each of the individual 
boxes B୩ and identify for each the trade-off between the 
mean of the points inside the box and the mass of the box. In 
a scenario discovery context, this is adapted by looking at the 
trade-off between coverage and density. Given a set of boxes, 
it is possible to identify the Pareto Front on this trade-off 
curve. Next, the analyst can inspect this resulting Pareto front 
and make an informed choice for a particular box on this 
Pareto Front. The result of this procedure is that out of the 
ensemble of boxes that is being generated, only a single box 
is used. As such this single box is easily interpreted. This 
completes the presentation of the method. 

 
III. CASE 

 
Here we introduce the case we use for assessing the 

efficacy of the outlined method. The European Union (EU) 
has targets for the reduction in carbon emissions and the 
share of renewable technologies in the total energy 
production by 2020 [31]. The main aim is to reach 20% 
reduction in carbon emission levels compared to 1990 levels 
and to increase the share of renewables to at least 20% by 
2020. However, the energy system includes various 
uncertainties related to technology lifetimes, economic 
growth, costs, learning curves, investment preferences and so 
on. For instance, precise lifetimes of technologies are not 
known and expected values are used in planning decisions. 
Furthermore, it is deeply uncertain how the economic 
conditions, which have a direct influence on the energy 
system, will evolve. Thus, it is of great importance to take 
these uncertainties into consideration when analyzing the 
energy system, and preparing policies for meeting the EU 
targets.  

In order to meet the 2020 goals, the EU adopted the 
European Emissions Trading Scheme (ETS) for limiting the 
carbon emissions [31]. ETS imposes a cap-and-trade 
principle that sets a cap on the allowed greenhouse gas 
emissions and an option to trade allowances for emissions. 
However, current emissions and shares of renewables show a 
fragile progress of reaching the 2020 targets. It is necessary 
to take additional actions for steering the transition toward 
cleaner energy production. This requires a better handling of 
the uncertainties in the energy system and more robust 
policies that can promote renewable technologies. 

In this study, a System Dynamics [32-34] model is used 
for simulating the plausible futures of the EU electricity 
system. The model represents the power sector in the EU and 
includes congestion on interconnection lines by 
distinguishing seven different regions in the EU. These are 
northwest (NW), northeast (NE), middle (M), southwest 
(SW), southeast (SE) of Europe, United Kingdom and Ireland 
(UKI) and Italy (I). Nine power generation technologies are 
included. These are: wind, PV solar, solid biomass, coal, 
natural gas, nuclear energy, natural gas with Carbon Capture 
and Sequestration (CCS), coal gasification with CCS, and 
large scale hydro power. The model endogenously includes 
mechanisms and processes related to the competition between 
technology investments, market supply-demand dynamics, 
cost mechanisms, and interconnection capacity dynamics. 
Not only endogenous mechanisms but also various 
exogenous variables are included. Fig. 2 shows the main sub-
models that constitute this model at an aggregate level. These 
are, installed capacity, electricity demand, electricity price, 
profitability and levelised costs of electricity. At an 
aggregated level, there are two main factors that drive new 
capacity investments: electricity demand and expected 
profitability. An increase of the electricity demand leads to an 
increase in the installed capacity, which will affect the 
electricity price. This will cause a rising demand, in turn 
resulting in more installed capacity. On the other hand, 
decreasing electricity prices will lead to lower profitability 
and less installed capacity, which will result in electricity 
price increases. Each sub-model has more detailed 
interactions within itself and with the other sub-models and 
exogenous variables and these causal relationships drive the 
main dynamics of the EU electricity system. 

Fig. 2 is a graphical representation of the main causal 
relationships between the main submodels. In order to run 
computational simulations, these relationships are translated 
into a system of differential equations, which are 
implemented in Vensim [35]. The model includes 33 ordinary 
differential equations, 499 auxiliary equations, and 632 
variables. It is beyond the scope of this paper to include all 
the equations and variables separately. More detail on the 
model can be found in [36], including a detailed descriptions 
of each equation and variable.  

We are interested in exploring and analyzing the influence 
of a set of deeply uncertain input variables on the key output 
variables. In order to explore the uncertainty space, not only 
parametric but also structural uncertainties are included in the 
analysis. For exploring structural uncertainties, several 
alternative model formulations have been specified and a 
switch mechanism is used for switching between these 
alternative formulations. Parametric uncertainties are 
explored over pre-defined ranges. Table 1 provides an 
overview of the uncertainties, 46 in total, that are analyzed 
and their descriptions.  
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Fig. 2. A diagram of the main causal loops of the EU energy model. 
 

TABLE 1: SPECIFICATION OF THE UNCERTAINTIES TO BE EXPLORED 
Name Description 
Economic lifetime For each technology, the average lifetimes are not known precisely. Different ranges for the 

economic lifetimes are explored for each technology.  
Learning curve It is uncertain for different technologies how much costs will decrease with increasing experience. 

Different progress ratios are explored for each technology.  
Economic growth It is deeply uncertain how the economy will develop over time. Six possible developments of 

economic growth behaviors are considered.  
Electrification rate The rate of electrification of the economy is explored by means of six different electrification 

trends. 
Physical limits The effect of physical limits on the penetration rate of a technology is unknown. Two different 

behaviors are considered.  
Preference weights Investor perspectives on technology investments are treated as being deeply uncertain. Growth 

potential, technological familiarity, marginal investment costs and carbon abatement are possible 
decision criteria.  

Battery storage For wind and PV solar, the availability of (battery) storage is difficult to predict. A parametric 
range is explored for this uncertainty.  

Time of nuclear ban A forced ban for nuclear energy in many EU countries is expected between 2013 and 2050. The 
time of the nuclear ban is varied between 2013 and 2050.  

Price – demand elasticity A parametric range is considered for price – demand elasticity factors.  

 
IV. RESULTS 

 
In order to explore the behavior of the European energy 

system in the presence of the emission trading scheme under 
uncertainty, we generated 5000 computational experiments 
using Latin Hypercube sampling. These 5000 experiments 

systematically cover the uncertainty space spanned by the 46 
uncertainties included in this analysis. Fig. 3 shows the 
results of these 5000 experiments for two key performance 
indicators, namely the fraction of renewables and the carbon 
emission reduction fraction. The envelope shows the 
bandwidth of outcomes as encountered across the ensemble 
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of experiments. The Gaussian Kernel Density Estimate 
(KDE) at the left shows the distribution of the terminal 
values. A KDE can be understood as a continuous alternative 
to a histogram. The fraction renewables specifies the fraction 
of renewables in the total energy mix. As can be seen, in most 
runs this fraction increases over time, although there is still a 
substantial number of experiments where the fraction of 
renewables in 2050 is lower than in 2010. The carbon 
emission reduction fraction specifies by how much carbon 
emissions have been reduced as compared to the value in 
2010. Note that a score above 0 means a decrease in 
emissions, while a score below 0 means an increase in 
emissions. From the KDE, we infer that in most experiments 
the emissions slightly increase as compared to the 2010 
levels.  

Taking the results for both the fraction of renewables and 
the carbon emissions reduction fraction together, it appears 
that the current ETS policy is far from effective in achieving 
the intended shift towards more sustainable energy 
generation. Even if the fraction of renewables where to 
increase, this increase does not appear to coincide with a 
substantial reduction of carbon emissions. Quite the opposite, 
in most experiments carbon emissions increase.  

To perform scenario discovery, it is necessary to classify 
the results into results that are of interest and results that are 
not of interest. Typically in scenario discovery, the results 
where the policy fails are classified as being of interest. Here, 

we have chosen to focus on the subset of cases where the 
fraction of renewables in 2050 is lower than in 2010.  

To test the random boxes approach, we compare it with a 
normal PRIM analysis. Both are parameterized in the exact 
same way. We generate 1000 random boxes, where each 
boxes uses 15 randomly selected uncertainties. We train both 
the normal PRIM and the random boxes approach on the 
dataset with 5000 experiments. As a test set, we generate a 
separate dataset containing 2000 experiments, again 
generated using Latin Hypercube sampling. Below we use the 
test set as the basis of comparison. It provides insight into 
how well the results from both the normal PRIM and the 
random boxes approach generalize.  

Fig. 4 shows the peeling trajectories resulting from the 
normal prim and the random boxes approach. For the random 
boxes approach, we only show the best possible solution in 
terms of density and coverage (labeled Pareto front). As can 
be seen, the random boxes peeling trajectory dominates the 
normal PRIM on virtually all locations. This implies that the 
random boxes approach is likely to produce candidate boxes 
that are robust to new data. That is, the random boxes 
approach helps in preventing the inclusion of spurious 
uncertainties in the box definition. This figure also suggests 
that the normal PRIM procedure can get stuck in a local 
optimum, confirming the suggestion made in the introduction 
that PRIM can suffer from the usual defects of hill climbing 
optimization procedures.  

 
 

 
 

Fig. 3. Envelopes with traces for the fraction of renewables and the carbon emission reduction fraction, and Gaussian Kernel Density estimates for their 
terminal values. 
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Fig. 4. Peeling trajectories. 
 

Table 2 and Table 3 show the box definitions for the box 
with the highest density for the random boxes procedure and 
the normal PRIM procedure respectively. Both box 
definitions consist of 15 uncertainties. In case of the random 
boxes procedure, this is the maximum number possible. Out 
of these 15 uncertainties, 5 uncertainties occur in both 
(SWITCH economic growth, economic lifetime ngcc, 
investment proportionality constant, weight factor 

technological familiarity, and year), the other 10 are unique 
to either. Looking at the 5 shared uncertainties, we observe 
that the exact limits are slightly different, but the ranges 
overlap to a large degree. The substantial difference between 
the two boxes further supports the claim that the normal 
PRIM can get stuck in local optima that can be avoided by 
using the random boxes procedure.  

 
TABLE 2. BOX DEFINITION OF HIGHEST DENSITY BOX FOUND THROUGH THE RANDOM BOXES PROCEDURE 

uncertainty bandwidth 

SWITCH TGC obligation curve set([1, 3]) 

SWITCH economic growth set([1, 2, 5]) 

SWITCH lookup curve TGC set([1, 2, 3, 4]) 

SWITCH low reserve margin price markup set([1, 2, 3, 4]) 

SWITCH storage for intermittent supply set([1, 3, 5, 6, 7]) 

economic lifetime biomass 30.00 - 44.44 

economic lifetime hydro 50.01 - 69.98 

economic lifetime ngcc 25.00 - 40.00 

economic lifetime nuclear 51.62 - 69.05 

investment proportionality constant 0.70 - 3.45 

price volatility global resource markets 0.10 - 0.20 

starting construction time 0.10 - 3.00 

weight factor carbon abatement 1.54 - 9.99 

weight factor technological familiarity 1.84 - 9.56 

year 0.92 - 1.10 
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TABLE 3. BOX DEFINITION OF HIGHEST DENSITY BOX FOUND THROUGH THE NORMAL PRIM PROCEDURE 
uncertainty bandwidth   
SWITCH economic growth set([1, 2, 5]) 
SWITCH electrification rate set([1, 2, 5]) 
economic lifetime ngcc 25.00 - 39.42 
economic lifetime wind 20.00 - 28.01 
investment proportionality constant 0.50 - 3.82 
progress ratio coal 0.90 - 1.04 
progress ratio gas 0.85 - 0.99 
progress ratio nuclear 0.90 - 1.04 
progress ratio pv 0.76 - 0.90 
progress ratio wind 0.88 - 1.00 
time of nuclear power plant ban           2036.58 - 2099.99 
uncertainty initial gross fuel costs 0.50 - 1.38 
weight factor marginal investment costs 2.20 - 10.00 
weight factor technological familiarity 1.40 - 10.00 
year 0.91 - 1.10 

 
Looking at Table 2 and Table 3 from a content 

perspective, it is noteworthy that the box found through the 
random boxes procedure contains various uncertainties 
related to the economic lifetime of the various technologies, 
while the normal procedure focusses on the progress ratios of 
these technologies instead. Both point to the same underlying 
technological dynamic. The lifetime determines when 
reinvestments are needed. Investments in technology drive 
the progress of the technology. We speculate that there is 
some interaction effects between these two sets of 
uncertainties: either set of uncertainties can be included in the 
box definition and help in explaining the cases of interest, but 
including one set with the other will not add much to the 
overall explanation.  

Table 4 shows the feature scores for each of the individual 
uncertainties. This feature score is the misclassification rate. 

So a feature score of 0.2 means that if this uncertainty is 
randomly permuted on average 20% of the observations will 
be misclassified as a result. Feature scores give insight into 
the uncertainties that are most important in correctly 
classifying observations across the entire ensemble. The 
higher the score, the more important. The feature scores 
appear to follow a power law, so the first few features are the 
most important and the feature scores drops off quickly 
leaving a tail of unimportant features. This feature score can 
be used to identify spurious uncertainties that should be 
excluded from the box definition. Based on Table 4, the 
analyst can make a reasoned choice about which uncertainties 
should be used in training PRIM, and which not. It appears 
from this table that for this case the first five to ten 
uncertainties are the most important, and the rest can be 
ignored.  

 
TABLE 4. FEATURE SCORES FOR THE 46 UNCERTAINTIES 

Uncertainty Feature score Uncertainty Feature score 
SWITCH economic growth 0.201319 progress ratio gas 0.015899 
SWITCH electrification rate 0.195479 SWITCH lookup curve TGC 0.015837 
SWITCH physical limits 0.146025 SWTICH preference carbon curve 0.015262 
time of nuclear power plant ban 0.12489 weight factor technological familiarity 0.013156 
progress ratio wind 0.094162 progress ratio coal 0.012961 
economic lifetime wind 0.082826 economic lifetime hydro 0.012089 
progress ratio nuclear 0.058738 SWITCH interconnection capacity expansion 0.011704 
progress ratio biomass 0.042281 maximum no storage penetration rate pv 0.011039 
SWITCH carbon cap 0.039217 economic lifetime igcc 0.010754 
starting construction time 0.032507 SWITCH TGC obligation curve 0.010553 
SWITCH storage for intermittent supply 0.028046 maximum battery storage uncertainty constant 0.010231 
weight factor marginal investment costs 0.026424 investment proportionality constant 0.010095 
uncertainty initial gross fuel costs 0.02633 progress ratio hydro 0.009569 
economic lifetime nuclear 0.025166 economic lifetime ngcc 0.009501 
investors desired excess capacity investment 0.022952 progress ratio igcc 0.009137 
progress ratio ngcc 0.021385 price volatility global resource markets 0.008174 
price demand elasticity factor 0.019978 economic lifetime coal 0.007423 
economic lifetime biomass 0.019493 demand fuel price elasticity factor 0.007096 
year 0.01927 economic lifetime pv 0.006439 
SWITCH low reserve margin price markup 0.019101 weight factor technological growth potential 0.005161 
economic lifetime gas 0.018082 SWITCH Market price determination 0.004689 
SWITCH carbon price determination 0.017075 maximum no storage penetration rate wind 0.003547 
weight factor carbon abatement 0.016649   
progress ratio pv 0.016577   
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V. DISCUSSION 
 

The boxes identified in this case are still quite far 
removed from the ideal of having both a coverage and density 
close to 1. This is most likely due to a complicating 
dependency between the various uncertainties. That is, the 
assumption that the cases of interest arise out of subspaces 
that can be described as hyper-rectangles in the model input 
space, might not hold [1]. This suggests that substantial gains 
in coverage and density could be achieved by preprocessing 
the data using Principal Components analysis [1]. The 
outlined random boxes procedure could then still be used 
after this pre-processing step.  

In this paper, we explored a way of improving PRIM 
through ideas derived from Random Forest. An alternative 
direction that could be investigated is to assess the extent to 
which PRIM could be improved by combining it with 
Adaboost. Adaboost is an alternative to Random Forest. Like 
Random Forest, Adaboost is an ensemble method. In contrast 
to Random Forest, each ensemble member is generating 
based on reweighting the training data in light of the 
performance of the previously trained classifier. So, any 
observation that is misclassified by the first classifier is 
weighted more heavily in training the next classifier. This 
approach can be adapted to PRIM in a relatively straight 
forward manner.  

Both the improvement suggested above and the 
improvement explored in this paper keep the peeling and 
pasting procedure used in PRIM intact. However, there is no 
a priori reason why other optimization procedures could not 
be used instead of the lenient hill climbing used by PRIM. 
For example, the peeling trajectories shown in  

Fig. 4 suggest the use of a multi-objective optimization 
procedure where this peeling trajectory is identified directly 
by the algorithm, rather than emerging from the route 
followed by the hill climbing optimization procedure. That is, 
it might be possible to perform scenario discovery by 
optimizing the coverage and density jointly given box limits. 
These box limits would then be the decision variables used in 
the optimization. This idea can be implemented relatively 
straightforwardly using either simulated annealing or a 
genetic algorithm. Such an approach to improving PRIM 
might be particularly appealing given the evidence provided 
in this paper about local optima.  

 
VI. CONCLUSION 

 
In this paper we explored a way of improving PRIM, 

which is the dominant algorithm currently used for scenario 
discovery. We drew inspiration from work on Random 
Forests. A Random Forest is a collection of Classification and 
Regression Trees, where each tree is trained on a random 
subset of the data, and where at each split in the tree, a 
random subset of features is considered. The predictions of 
the resulting trees are aggregated through a voting system or 
by taking the average across the trees. Random Forest 

outperforms individual trees. The question we explored was 
whether random feature selection and bagging can be 
combined with PRIM and whether the resulting algorithm 
would outperform normal PRIM. From our analysis, we 
conclude that the resulting random boxes approach does 
indeed outperform PRIM. That is, we have shown that it is 
possible to improve on the results found through normal 
PRIM by adapting a random boxes approach.  

In the case study, we used a System Dynamics model of 
the European energy system and we explored the impact of 
the emission trading system on the future evolution of the 
energy system in terms of carbon emissions and the share of 
renewables in the overall energy mix. We generated a 
training set of 5000 computational experiments and a test set 
of 2000 computational experiments that cover the space 
spanned by 46 uncertainties associated with the European 
energy system. We performed scenario discovery using both 
normal PRIM and the random boxes approach and compared 
the results. We found that the best boxes in terms of both 
coverage and density identified through the random boxes 
approach dominated the best boxes identified through normal 
PRIM. When we compared two candidate boxes, one from 
each, we observed that the boxes shared only a third of the 
uncertainties. This implies that the solution found by PRIM 
was a local optima, while the random boxes approach was 
able to find a better solution. This also confirmed our 
suspicion, voiced in the introduction, that the lenient hill 
climbing optimization procedure used by normal PRIM can 
suffer from the usual defects of such optimization procedures 
like local optima.  

In the case study we also calculated feature scores using 
the ensemble of random boxes. These feature scores give 
insight into the relative importance of the different 
uncertainties in classifying the results. The higher the feature 
score, the more important. These feature scores can be used 
in selecting which uncertainties should be included and which 
uncertainties are spurious. Low scores uncertainties should 
not be included in the definition of the box.  

In scenario discovery, there are two important issues. The 
first is the interpretability of the results. The presented 
random boxes approach does help in interpretability through 
both the feature scores and the identification of the Pareto 
front. The feature scores can help in deciding to drop certain 
uncertainties from the box definition, making interpretation 
easier. The Pareto front peeling trajectory, which in our case 
dominated the peeling trajectory of normal PRIM, helps in 
finding high coverage high density boxes. The second 
important issue in scenario discovery is the inclusion of 
spurious uncertainties in box definitions. The feature scores 
over an additional tool, in addition to quasi p-values, that 
analysts can use to mitigate this problem.  

The analysis in this paper is based on only a single case. 
Future works should test the efficacy of the random boxes 
approach on more cases in order to assess whether this 
approach is always useful or whether its efficacy is case 
dependent. Given the success of Random Forest, however, 
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we speculate that the random boxes approach will virtually 
always add value. Another direction for future work is the 
interpretability of the ensemble of random boxes. In this 
paper, we addressed this through feature scores and the 
Pareto front. This interpretability concern also exists in case 
of Random Forest, a more thorough analysis for how this is 
addressed in the literature on Random Forest might reveal 
additional techniques that can be adapted to also work with 
the random boxes approach. Besides improving the random 
boxes procedure introduced in this paper, it could be of great 
value to explore other avenues for improving on normal 
PRIM. Noteworthy directions here include a more direct 
global optimization procedure instead of the lenient hill 
climbing currently used by PRIM, and adapting Adaboost to 
work with PRIM.  
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