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Abstract─Regenerative medicine, especially in the area 

related to biomaterials, is a rapidly advancing interdisciplinary 
field. Although there are many possibilities in applying 
materials and technologies in the treatment of different organs, 
little is quantitatively known about candidate combinations 
because this field requires extensive knowledge over multiple 
research fields. 

The purpose of this research is to detect candidate 
combinations of the keywords Organ – Material - Technology 
using a citation network and text-based co-word analysis. We 
first analyzed the citation network of academic papers to 
visualize an overview of regenerative medicine. We retrieved 
papers from the Web of Science using specific search queries. 
Using a topological-based method, papers were categorized into 
clusters according to the feature words. 

After obtaining the high-ranked keywords of the main 
clusters, we divided them into three regions: Organ, Material, 
and Technology. By comparing the co-occurrence of words 
among the three regions, we detected plausible linkages within a 
cluster as well as existing linkages within each paper in the 
whole dataset. The results suggest the potential effectiveness of 
new combinations that have not yet been examined in detail, and 
can be used to predict niches and missing links in regenerative 
medicine. 
 

I. INTRODUCTION 
 

Currently, it has become more difficult for researchers to 
capture an overview and trends of their research interest 
destination due to the expansion of academic papers [1][2]. In 
the interdisciplinary field, the difficulty increases even more 
when multiplying the adjacent regions concerned. In addition 
to the massive amount of total information, there is a 
tremendous number of possible combinations of contents 
among related regions. This paper proposes a method of 
reducing the researchers’ load, and of exploring the adjacent 
regions lying outside their specialty that would also help to 
inspire new research ideas in regenerative medicine. 

Regenerative medicine is a highly interdisciplinary field 
involving engineering, life sciences, and material sciences 
that have been pursued for treating organs or tissues in the 
human body. There have been three general strategies for the 
creation of tissues: cells, signal molecules, and matrix [3]. 
The ability to repair tissue is a fundamental property of all 
multicellular organisms that proceeds with the interaction of 
cells and the extra-cellular matrix (ECM): the 
physico-chemical environment of cells. Although previous 
attempts to elaborate the complexity of the repair process 
have not succeeded in providing both “seed and soil” in 
therapy [4], recent advances in life science have revealed the 
importance of ECM that regulates cell behavior. In fact, there 

is a growing realization that, for cell therapies to succeed, it 
may not be sufficient to implant cells without appropriate 
ECM [5][6]. If humans are the model organism, 
cross-disciplinary collaborations and technology integrations 
will be essential for moving away from the study of single 
cells towards the medical goal [7]. 

Several attempts have been made to reveal the trends of 
regenerative medicine using citation analysis of papers 
[8][9][10][11][12]. Shibata [8] and Chen [9][10] proposed a 
method of detecting emerging research trends analyzing the 
whole structure of the citation network. Zhao [11] found the 
dominance of a few research areas in this field using 
all-author citation counting. He also found author selection 
had a greater effect on mapping results. [12]. Bibliometrics 
and text mining techniques have also been applied to this 
field [13][14]. Li [13] compared the term frequency of author 
keywords in each delimited period. An [14] analyzed the 
co-occurrence of words in medical subject headings. Both Li 
and An examined trends using the metadata of papers in the 
stem cell field, but there are difficulties in term selection. 
Although term frequency or experts consulting can be clues 
for selecting terms, it is not sufficient for targeting the proper 
abstraction level or scope of terms from the perspective of 
guiding researchers in exploring new branches. In short, these 
text-based approaches have not succeeded in providing more 
than a global overview in regenerative medicine, either. 

Advanced investigations into literature-based discovery 
are seen in different fields. Ittipanuvat [15] examined the 
linkages between technology and a social issue: robotics and 
gerontology. He proposed a method of assisting humans in 
selecting terms, using semantic similarity to measure 
relatedness between citation network clusters of the two 
domains. However, as the relatedness was simply examined 
by comparing one value that represents each cluster pair, the 
distribution of terms in the cluster is not deeply considered. 
In addition, although a term’s importance was calculated by 
tf-idf, the criteria for the final selection of terms are unclear as 
both the top- and bottom-listed terms were referred to alike. 

In this study, we aim to detect potential candidate 
combinations of the keywords Organ – Material - Technology 
in regenerative medicine. To meet this challenge, we made a 
conditional model combining two values of the keywords, 
which are evaluated as “important, but not researched well”. 
We applied citation network analysis and text-based co-word 
analysis to evaluate the frequency of the combination of 
keywords in academic papers. Our results can offer 
researchers a guide to examining adjacent regions in this 
field. 
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II. METHODOLOGY 
 

An outline of the analysis schema in this research is 
shown in Fig. 1. First, we analyzed the citation network of 
academic papers to visualize and grasp an overview of the 
targeted knowledge domain, according to the methodology of 
previous research [1][2]. To focus on specific areas in 
regenerative medicine, we retrieved papers using the queries 
described in the next paragraph. After visualizing the clusters 
of the citation network, we classified the keywords of each 
cluster into three regions: Organ, Material, and Technology. 
Then, we selected a cluster by degree of share of the 
classification. To detect the candidate combinations in the 
three regions, we made a conditional model, which defines 
the range of values of the classified keywords. Finally, we 
made heatmaps to evaluate this model, visualizing the 
frequency of co-occurrence by the classification. 

Taking into account the importance of the cell 
environment, we refined the corpus to the area related to the 
extra-cellular matrix, which is an advanced interdisciplinary 
area in regenerative medicine. The query set of prior research 
is designed to retain wide coverage of citation data of 
regenerative medicine by using multiple queries: 
“regenerative medicine*”, “ES cell*”, “embryonic stem 
cell*”, “embryo-derived stem cell*”, “ips cell*”, “pluripotent 
stem cell*”, “adult stem cell*”, or “somatic stem cell*” [8]. 
In this study, we further extended the corpus by adding 
“tissue engineering*” to the query set, and filtered the data by 
“extra-cellular matrix*” or “ECM*” (Fig. 1). We retrieved 
academic papers including these queries in the titles, abstracts, 
keywords, and keywords plus from the following citation 
database: the Science Citation Index (SCI-EXPANDED), the 
Social Sciences Citation Index (SSCI), and the Arts & 
Humanities Citation Index (A&HCD) compiled by Thomson 
Reuters.  

 

Using citation network analysis, the network is divided 
into clusters by the topological clustering method [16]. The 
maximum connected component of the citation network in 
each cluster is visualized by using a large graph layout (LGL) 
[17]. LGL is a spring layout algorithm to visualize large 
networks, which was originally designed for studying 
biological models. The intra-cluster links were provided with 
the same color to seize the positional relation of each cluster. 
After visualizing, we analyzed the characteristics of the top 
six clusters that have more than 200 papers, by comparing the 
distribution of their keywords and keywords plus. Both of the 
keywords were ranked by tf-icf, a measure of the importance 
of the term, based on the method of term frequency 
multiplied by inverse document frequency (tf-idf). The tf-icf 
weight of term i in cluster s is the term frequency multiplied 
by the inverse cluster frequency, given by: 
௜ܹ,௦ ൌ ݐ ௜݂,௦ 	ൈ 	݅ܿ ௜݂,			      (1) 

where 

ݐ ௜݂,௦		ൌ	
௧஼೔,ೞ
ேೞ
	 and      (2) 

݅ܿ ௜݂ ൌ 	 log ቀ
ெ

௖௙೔
ቁ .		   (3) 

Here, ܥݐ௜,௦ is the number of occurrences of term i in cluster s, 

௦ܰ  is the total number of terms in cluster s, ܿ ௜݂  is the 
number of clusters containing term i, and M is the total 
number of clusters. 

In this study, we compared high-ranked keywords in each 
cluster, and classified the top 100 keywords into three 
regions: Organ, Material, and Technology. The criteria for 
the classification are as follows. We included cell names and 
cell adhesion molecules in the class of Organ, whereas 
extra-cellular-matrix-related molecules were included in 
Material. Disease names were classified if they were used or 
related to an organ whereas liquid factors, like growth factors, 
were not classified because their localization in the body is 
unclear. We excluded general terms that represent species 
like “human”, “mouse”, “porcine”, “organ”, “tissue”, and

 

 
Fig. 1 Outline of methodology in this paper. 

 

 
Fig. 2 Query set to refine the corpus of regenerative medicine. 
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 “cell”, as well as materials such as “fiber”, “substrate”, 
“film”, “sheet”, “material”, and “biomaterial”, from the 
classification. We classified related abbreviations, but not 
adjectives and verbs unless they were used or related to the 
classified keywords. Keywords consisting of two or three 
terms were also classified. 

After classifying the keywords, we investigated the degree 
of share of the three regions in each cluster. We calculated 
the sum of the term frequency and Herfindahl-Hirschman 
Index (HHI), which is typically used to investigate industrial 
oligopoly, defined as 
௜,௦ܪ ൌ ∑ ሺݐ ௜݂ሻଶ

ேೞ
௜ୀଵ . (4) 

 
For further investigation, we selected a cluster with the 

lowest value of HHI, as the risk of counting senseless 
combinations was comparatively lower in the selected cluster, 
which will be explained later. To simplify the following 
calculation and evaluation, we added a unique ID to each 
keyword. These IDs were composed of three digits, which 
represent cluster, classification, and tf-icf ranking. For 
instance, the ID of the keyword “disc” is “3o5”, which means 
that the keyword belongs to the third cluster in the whole 
network, is categorized in Organ, and has a tf-icf ranking in 
the cluster of 5. We counted the number of papers that have 
pairs of keywords from different regions in their abstracts, 
which we call “co-occurrence” in this study. We used the 
keywords from the selected cluster, and counted their 
co-occurrence in the paper abstracts from every cluster. 

To detect possible candidate combinations of Organ - 
Material - Technology, we made the conditional model 
shown in Fig. 3. Dark red represents a high degree of tf-icf, 
and the distance between the circles represents the number of 
co-occurrences. The designated candidate combination of 
keywords is suggested by the dotted line. We assumed that 
keywords with high tf-icf tend to co-occur more, which 
means that many researches have already applied the 
keyword pair, and that those with a low tf-icf tend to co-occur 
less, which means that few researches have applied the 
keyword pair. In this model, we distinguished the keyword 
combination with a high tf-icf and low co-occurrence, which 
would be evaluated as “important, but not researched well”. 

 

 
Fig. 3 Model of candidate combination of keywords 

 
We distinguished the pairs that have conditions of fewer 

than 10 co-occurrences, tf-icf rankings of 5 or less  and 60 or 
less in each region. The pairs whose sum of tf-icf ranking was 
lower than 30 were also included. We summed up the 
co-occurrence of the pairs with the same meaning in their 
keywords, and excluded the pairs when they exceeded the 
setting value. 

Finally, we made heatmaps that represent co-occurrence 
of all combinations of the classified keywords, to evaluate 
this model and its results. The keywords Organ and Material 
were applied to columns and rows representing each tf-icf 
ranking. We compared the distribution of the co-occurrence 
in abstracts from every cluster with those from the selected 
cluster. 
 

III. RESULTS 
 

The number of papers on regenerative medicine published 
before the end of 2014 was 50,654, using the queries of the 
previous research. By adding the query “tissue engineering*”, 
the number increased to 77,272. By filtering the papers with 
the query “extra-cellular matrix*” or “ECM*”, the number 
decreased to 6,852. In the 6,852 papers obtained, 6,281 
papers were included in the largest connected component in 
the citation network to be divided into 39 clusters. The 
number of annual publications in each cluster is shown in Fig. 
4. The top four clusters are increasing rapidly, whereas the 
others are increasing gently.  

 
Fig. 4 Number of papers including the query set for regenerative medicine in each cluster. 
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Fig. 5 Visualization of the citation network of the top six clusters in regenerative medicine.  

 
TABLE 1 ORGAN - MATERIAL - TECHNOLOGY CLASSIFICATION OF THE KEYWORDS IN THE TOP SIX CLUSTERS 

Cluster Ranking Organ Ranking Material Ranking Technology 
1 2 cartilage 1 hydrogel 24 compression 
1 3 chondrocytes 7 peptide 34 dimensional 
1 4 articular 8 alginate 42 mechanical property 
2 1 valve 34 elastin 3 decellularized 
2 2 heart 73 gel 5 decellularization 
2 4 heart valve 81 hydrogel 9 graft 
3 5 disc 1 nanofibers 2 electrospun 
3 15 intervertebral disc 3 nanofibrous 4 electrospinning 
3 17 bone 7 nanofibrous scaffold 13 composite 
4 2 stem cell 4 integrin 96 mineralization 
4 3 osteogenic 20 laminin 141 dimensional 
4 5 bone 52 integrins 237 bioreactor 
5 4 hepatocytes 14 gelatin 2 cell sheet 
5 7 skin 18 polymer 12 temperature responsive 
5 8 diaphragmatic 22 pnipaam 13 detachment 
6 1 tmj 17 tgf 24 hypoxia 
6 2 cartilage 34 gag 66 piii 
6 3 disc 35 collagen type 94 oxygen tension 

 
Analyzing the characteristics of the top six clusters that 

have more than 200 papers, we realized that the keywords of 
the clusters can be classified into three regions: Organ, 
Material, and Technology. The position of the top six clusters 
in the whole network, and the high-ranked keywords in each 
cluster, are shown in Fig. 5. Keywords that represent Organ, 
Material, and Technology are colored red, blue, and yellow, 
respectively. We assumed that the deviation among the three 
regions would be different according to the cluster, 
comparing the tf-icf ranking of each classified keyword 
(Table 1).  

To confirm this, we classified the top 100 keywords into 
the three regions, and estimated the degree of share of each 
cluster, by calculating the sum of the term frequency and the 
Herfindahl-Hirschman Index (HHI) value (Table 2). As a 
result, the clusters were indicated by different levels of 

deviation. Comparing high-ranked papers in each cluster, we 
noticed that papers in cluster 4 and cluster 6 were basic 
research in histology, whose keywords in Technology were 
few. Papers in cluster 2 were related to decellularization, 
which is a technology to isolate the extra-cellular matrix to 
prevent organ rejection caused by antibodies on cell surfaces. 
The methods used to lyse, kill cells, or break bonds and to 
remove cells from the matrix by physical or chemical or 
enzymatic treatments, whose keywords were related to 
Material, were few. Taking these results into account, we 
selected cluster 3, which had the lowest HHI value, for 
further investigation. As the three regions were relatively 
uniform in cluster 3, the risk of counting senseless 
combinations was lower than the other clusters. Cluster 3 
consisted of 1,226 papers related to nanotechnology. 
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TABLE 2 SUM OF TERM FREQUENCY AND HERFINDAHL-HIRSCHMAN INDEX (HHI) VALUE IN THE TOP SIX CLUSTERS 

No. Cluster name 
Sum of term frequency 

HHI value 
Organ Material Technology 

1 Hydrogel and Cartilage 0.0300  0.0270  0.0100  0.0017  
2 Valve and Decellularization 0.0535  0.0025  0.0190  0.0032  
3 Nanofibers and Electrospun 0.0283  0.0182  0.0085  0.0012  
4 Bone and Integrin 0.0442  0.0056  0.0005  0.0020  
5 Cell sheet and Hepatocytes 0.0346  0.0094  0.0102  0.0014  
6 Tmj and Cartilage 0.0692  0.0098  0.0014  0.0049  

 
TABLE 3 IDS OF THE TOP 100 KEYWORDS IN THE NANOTECHNOLOGY CLUSTER, WHICH REPRESENT CLUSTER, 

CLASSIFICATION, AND RANKING OF TF-ICF 
ID Organ ID Material ID Technology 
3o5 disc 3m1 nanofibers 3t2 electrospun 
3o15 intervertebral disc 3m3 nanofibrous 3t4 electrospinning 
3o17 bone 3m7 nanofibrous scaffold 3t13 composite 
3o19 intervertebral 3m8 nanofiber 3t37 electrospun scaffold 
3o22 nerve 3m12 pcl 3t56 electrospun nanofibers 
3o27 ligament 3m14 chitosan 3t58 electrospun fiber 
3o30 tendon 3m16 polymer 3t88 degradation 
3o31 osteogenic 3m18 silk   
3o32 mesenchymal stem 3m39 gelatin   
3o33 mesenchymal stem cell 3m57 plla   
3o34 stem 3m60 fibroin   
3o35 stem cell 3m73 lactide   
3o38 osteoblast 3m76 nano fibrous   
3o40 nucleus pulposus 3m77 plga   
3o41 pulposus 3m83 nanofiber scaffold   
3o44 msc 3m84 lactic   
3o45 bone tissue 3m85 bioactive glass   
3o49 mesenchymal 3m89 silk fibroin   
3o50 nucleus 3m96 nanofibres   
3o53 cartilage 3m98 glass   
3o62 corneal     
3o94 osteogenic differentiation     
3o97 fibroblast     

 

The unique IDs of the top 100 keywords in the 
nanotechnology cluster are represented in Table 3. There 
were 23, 20, and 7 keywords classified into Organ, Material, 
and Technology, respectively. The number of unclassified 
keywords was 50, following the classification criteria 
described above.  

The candidate combinations of keywords are shown with 
their ID and co-occurrence (Table 4). Ten pairs were detected 
within the setting range of the conditional model. However, 
there were pairs that had more than 200 co-occurrences 
whose tf-icf ranking was not very high. 

To evaluate this model and its results, we made heatmaps 
that represent the co-occurrence of all combinations of the 
classified keywords in Organ and Material in the 
nanotechnology cluster (Figs. 6 and 7). The depth of blue 

represents the degree of co-occurrence. Cells with more than 
100 co-occurrences were colored the same dark blue. Cells 
with no combination were colored gray. The numbers in the 
columns and rows represent the tf-icf ranking. In both 
heatmaps, Material 16 and Organ 34, which represent 
“polymer” and “stem”, are the highest among all keywords. 
Material 12, 57, and 77 that represent “pcl”, “plla”, and “plga” 
did not co-occur with any keywords in Organ, whereas every 
keyword in Organ co-occurred with some or all keywords in 
Material. Co-occurrence was not always high in the pair of 
high-ranked tf-icf in both heatmaps. In the nanotechnology 
cluster, high-ranked keywords in Material tended to co-occur 
more with the keywords in Organ generally (Fig. 7), whereas 
no tendency were seen in the co-occurrence of high-ranked 
keywords in general, in all clusters (Fig. 6). 

 
TABLE 4 CANDIDATE COMBINATION OF KEYWORDS IN THE NANOTECHNOLOGY CLUSTER 

Keyword1 Keyword2 ID1 ID2 Co-occurrence 
disc fibroin  3o5 3m60  3 
ligament nanofibrous  3o27 3m3  6 
tendon nanofibrous  3o30 3m3  5 
nucleus nanofibrous  3o50 3m3  1 
tendon electrospinning  3o30 3t4  7 
nucleus electrospinning  3o50 3t4  2 
nucleus electrospun  3o50 3t2  1 
intervertebral disc chitosan  3o15 3m14  3 
intervertebral disc electrospinning  3o15 3t4  2 
intervertebral electrospinning  3o19 3t4  2 
bone polymer  3o17 3m16  258 
stem polymer  3o34 3m16  490 
stem cell polymer  3o35 3m16  253 
cartilage polymer  3o53 3m16  203 
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Fig. 6 Heatmap of Organ - Material co-occurrence in all clusters.  

 
Fig. 7 Heatmap of Organ - Material co-occurrence in the nanotechnology cluster. 

 
However, we detected a deviation similarity and outlier 

between the keywords in the columns and rows. For example, 
Organ 53 and 97, which represent “cartilage” and “fibroblast”, 
were similar in the deviation of co-occurrence, but they had 
an extreme deviation in the cells corresponding to Material 8 
and 14, which represent “nanofiber” and “chitosan”. 
 

IV. DISCUSSION 
 

Previous studies have proposed methods of showing the 
possible academic fields of association, fusion, or technology 
transfer, which can be effective in decision making for R&D 
managers or policy makers [8][15]. On the other hand, the 
proposed method in this study was designed to provide a 
more concrete guide for researchers. 

The topological positions of the top six clusters represent 
the relatedness of each cluster calculated by citation data 
(Fig.5). In cluster 3, which was the nanotechnology cluster, 

high-ranked keywords were distributed in the three regions, 
Organ, Material, and Technology. 

In this study, we selected the nanotechnology cluster 
whose HHI value was the lowest (Table 2). The clusters with 
a high HHI value had a risk of having some reason for the 
share; for example, basic researches do not tend to refer to 
Technology, or methods of extracting whole ECM do not 
tend to refer to each Material. Therefore, we did not 
investigate high-HHI-value clusters, but this does not mean 
that the nanotechnology cluster is the only cluster to be 
investigated. It would be meaningful to investigate the 
lower-value HHI clusters, such as the “hydrogel and cartilage” 
cluster or the “cell sheet and hepatocytes” cluster. According 
to an expert hearing in the field of nanotechnology, it is 
reasonable to have such a low HHI value, because 
nanotechnology is a field that cannot be established without 
collaboration with researchers from various fields. 
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The experimental results showed the deviation of 
keywords in Organ, Material, and Technology among the 
clusters in regenerative medicine. Under the setting criteria, 
we showed the candidate combinations of keywords with 
high tf-icf and low co-occurrence (Table 4). 

For example, we detected the combination of “disc” and 
“fibroin” whose co-occurrence count was only 3, even if the 
importance of “disc” is the highest in the nanotechnology 
cluster. Among the three papers that referred to both “disc” 
and “fibroin”, Bhattacharjee’s paper [18] had the highest 
citation number of 15. He developed a designed scaffold of 
silk fibroin with chondroitin sulphate (CS), resembling the 
annulus fibrosus of intervertebral discs, in 2012. Human 
chondrocytes cultured over the scaffold uniformly followed 
the silk fiber alignment and deposited ECM maintaining their 
re-differentiation. Although the outcome of the combined 
effect of cell/matrix alignment and chondrogenic support 
reveals the availability of the combination of “disc” and 
“fibroin”, few researches have experimented with this 
combination. Therefore, there is a possibility of a niche or 
missing link lying between “disc” and “fibroin”. 

The same can be applied for other combinations such as 
“ligament” and “nanofibrous”, or “tendon” and “nanofibrous”, 
as their co-occurrence was 6 and 5 count, even if the tf-icf 
ranking of “nanofibrous” is third. We noticed adjectival, 
plural, or compound synonyms, as “nanofibrous” is similar to 
“nanofibers”, “nanofiber”, “nanofibrous scaffold”, “nano 
fibrous”, “nanofiber scaffold”, and “nanofibres”. One 
solution is simply to combine the values of these synonyms. 
However, the distinction between noun and adjective or other 
minor differences of inflection also has certain meanings for 
the researchers in this field. For further investigation, the 
abstraction level of the keywords should be modified to an 
adequate range according to the purpose. If the abstraction 
level is high, the outcome will be global; if the abstraction 
level is low, the outcome will be detailed. 

There is the possibility of another classification or 
sub-classification into regions such as “liquid factor”, 
“substrate property”, and “structure of scaffold”, instead of 
Organ - Material - Technology. To examine these, it is 
necessary to expand the corpus, as keywords corresponding 
to these regions were rare in the top 100 keywords. We 
limited the classification range to the top 100 keywords this 
time, while there are 134,328 keywords in the 
nanotechnology cluster. To expand the corpus of keywords, 
the classification process is expected to be automated, like 
using corresponding dictionaries. However, compared to the 
existing Organ or tissue expression dataset, it is difficult to 
find a proper dataset of Material or Technology, as these are 
rapidly expanding categories. Therefore, in using such 
dictionaries or datasets, we should be aware of the limitation 
of their range. In addition, if we expand the corpus, the 
possibility of noise  arising, as well as the desired outcome 
suited to a specific region, will increase. There is a trade-off 
in selecting the threshold in each case. 

Using heatmaps, we visualized the co-occurrence of all 
combinations of the keywords Organ and Material in the 
nanotechnology cluster (Figs. 6 and 7). Contrary to our 
expectation, co-occurrence was not always high in the pair of 
high-ranked tf-icf, and there were many candidate 
combinations within the setting range of the conditional 
model. It is an inevitable result, as tf-icf reflects the inverse 
cluster frequency, which is a characteristic that other clusters 
do not have. Different deviation would be seen if we take tf 
or tf-idf on behalf of tf-icf. The deviation similarity and 
outlier between the keywords in the same region we detected 
this time would be useful, as there is potential for 
development into a recommendation function. For example, 
"mesenchymal" and "cartilage" that correspond to the lane of 
Organ 49 and 53, are similar in the deviation of the 
co-occurrence of the keywords in Material. However, as for 
the co-occurrence of "nanofiber" and "chitosan" of Material 8 
and 14, the pattern was reversed between the lane of 
"mesenchymal" and "cartilage". Therefore, we can 
recommend the combinations of "mesenchymal" - "chitosan" 
and "cartilage"-"nanofiber" as missing links to be connected. 

The idea of using co-occurrence of context words to 
capture the characteristics of words is implemented as vector 
space semantic representations, like word2vec [19] or Glove 
[20]. As with the semantic representations, the candidate 
combinations of this study have no golden standard. To verify 
the results, we should set some task to see the performance. 
For further study, the time-series variations of co-occurrence 
would be the key for the task to predict the stage of the 
combinations. 

From the expert hearing in the nanotechnology field, the 
results of this study are highly useful for researchers who are 
beginning to explore new fields, as a first step to 
understanding the pyramid of the targeted academic region. It 
was suggested that the composition of the clusters in the 
high-co-occurrence group would also be meaningful. Another 
suggestion from the expert hearing was that, as silk and 
chitosan are the general materials that have conventionally 
been used in nanotechnology, there is a possibility that the 
research phase has already passed for these materials, which 
resulted in the low co-occurrence. However, even if these 
materials have been generally used, there still remains the 
possibility that the proposed combination has not yet been the 
subject of experiment. 
 

V. CONCLUSION 
 

In this research, we proposed a method of detecting 
candidate combinations of keywords in regenerative medicine, 
using a citation network and text-based co-word analysis. We 
first analyzed the clusters in the citation network of academic 
papers to visualize an overview of regenerative medicine. 
After obtaining high-ranked keywords of the main clusters, 
we divided them into three regions: Organ, Material, and 
Technology. By comparing the co-occurrence and tf-icf 
among the three regions, we detected plausible linkages 
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within the keywords in the selected cluster as well as the 
existing linkages within each paper in the whole dataset. The 
results suggest the potential effectiveness of new 
combinations that have not yet been examined in detail, and 
can be used to predict niches and missing links in 
regenerative medicine. 
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