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Abstract--Healthcare is beginning to embrace point of care 

(POC) diagnostics and medical applications that are based on 
the internet of things (IoT) and the ubiquitous smart phone. 
Advanced medical diagnostics will utilize biosensors for 
biological data acquisition. This paper introduces the 
forecasting of biosensors that have the potential to be used in 
POC and IoT applications. For this research three types of 
biosensors were selected. These are biosensors for testing of 
blood, saliva, and breath. Bibliometrics and patent analysis of 
these biosensors are used to develop technology maturity rates 
based on the Fisher-Pry model. The Science Citation Index 
(SCI) is used for bibliometrics and patent analysis is derived 
from global patent databases. The Fisher-Pry projections or S-
curves enable insights into the maturity levels of the emerging 
biosensor technologies under consideration and forecasting their 
growth. Patent analysis based on cumulative annual patent 
count indicated that blood biosensors reached their technology 
maturity midpoint in 2009 with the midpoints of saliva and 
breath biosensors lagging by 8 and 14 years respectively. 
Bibliometrics with annual publication count did not appear to 
provide much value in forecasting the maturity growth of the 
three biosensors. 
 

I. INTRODUCTION AND BACKGROUND 
 
The digital economy is firmly entrenched in healthcare. 

One emerging aspect is connected health which supports 
portable or wearable networked devices for personal and 
physician care [1], [2]. Besides the ubiquitous smart phone, 
there are three major technology trends that are converging to 
support this new healthcare environment of advanced medical 
diagnostics: (1) biological data acquisition by biosensors; (2) 
point of care (POC) diagnostics; and (3) medical applications 
based on the internet of things (IoT).  
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Figure 1: Biosensors for Point of Care (POC) and Internet of Things (IoT) 

 

Biosensor technologies play a pivotal role in driving these 
trends. This paper attempts to identify the trends for the three 
types of biosensors that are considered important for POC 
and IoT based on the human sample types: blood, saliva, and 
breath [3] (Figure 1). A technology forecasting approach is 
applied based on bibliometric data. Technology forecasting, 
biosensors, POC, and IoT are explained further in the next 
sections. It should be noted that POC and IoT are medium to 
long term trends. 
 
A. Technology Forecasting and Bibliometrics 

Managers and executives involved in the technology 
fields are constantly seeking ways and means to make better 
strategic decisions with respect to research and development 
(R&D) management, new product development, new process 
technologies, production capabilities, commercialization, 
marketing, and investing in new technologies [4]. Innovation 
forecasting should help management with some aspects of 
these decisions. Innovation forecasting finds information on: 
(1) technology life cycle status by determining development 
advancement, growth rate, and status of dependent 
technologies; (2) innovation context receptivity due to 
economic and other influences; (3) product value chain and 
market prospects issues related to payoffs and fulfillment 
requirements [4].  Technology forecasting mainly relates to 
the technology life cycle and provide insights into 
technological change by predicting and profiling future 
characteristics of useful technologies or techniques. 
Innovation and technology forecasting use multiple methods 
to achieve their objectives [5]. One popular method is 
bibliometrics which is the statistical analysis of text, data, and 
information usually in the form of publications such as 
scholarly journals, books, articles, conference proceedings, 
and patent filings  [6], [7]. When analyzing technologies the 
publication sources are generally scientific journals and 
patents.  

Bibliometrics and data mining of patent data are gaining 
in importance due to the digital economy and increased 
access to global research and commercial data. Bibliometric 
methods are already well established in the field of library 
and information science especially for academic literature [8]. 
Citation and content analyses are the most common 
bibliometric methods. 

Patents, representing intellectual property (IP) rights, also 
provide valuable insights into technology trends. Patent 
analysis uses patent data for technology forecasting and can  
be used in conjunction with other forecasting techniques to 
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provide guidance on the state of emerging technologies and 
their respective industries [9].  

However, different types of sources used in bibliometric 
studies are limited to what they can indicate. Watts and Porter 
have separated out the indicators (by source type) to represent 
different stages of the technology life cycle [4]. The cycle 
starts with scientific publications followed by engineering 
publications and patent applications and then by newspapers 
and other popular publications. This is depicted in Table 1. 

 
TABLE I: TECHNOLOGY LIFE CYCLE INDICATORS [4] 

Factor  Indicator 
R&D Profile  

 Fundamental Research  
No. of items in databases such as Science 
Citation Index 

 Applied Research 
No. of items in databases such as 
Engineering Index 

 Development  
No. of items in databases such as U.S. 
Patents 

 Application 
No. of items in databases such as 
Newspapers Abstracts Daily 

 Societal Impacts  
Issues raised in the Business and Popular 
Press abstracts 

Growth Rate  Trends over time in number of items 
Technological Issues  Technological needs noted 
Maturation  Types of topics receiving attention 
Offshoots Spin-off technologies linked 

 
The activity level of the indicators implies that the 

technology is at a specific stage of the life cycle [4], [10].  
In this paper, the technology life cycle indicators are 

examined with two additional considerations: 
 Bibliometrics now only refer to publications and 

bibliometrics for patents are referred to as “patent 
analysis” to emphasize the importance of patents for 
commercialization [11]. 

 Only the first three stages of the life cycle, namely 
fundamental research, applied research, and development, 
are considered with the assumption that, in general, 
biosensors for POC and IoT are still emerging 
technologies. 
 
Traditionally, interest has been around emerging 

technologies and their early stages which have been measured 
by scientific publications and patents. Other approaches using 
expert opinions or judgments have been tried but the results 
have not been clear since emerging technologies are 
explained by expectations and visions and not facts [12]. A 
study revealed that some technologies indicated by experts to 
be critical turned out not to be so [13]. This study relied on 
the growth of scientific publications and patents as indicators 
of technology activity. 

There are some concerns that using the number of patents 
to measure innovation may be misleading or insufficient [14]. 
For example, some patents are never commercialized or some 
companies use patenting to prevent others from entering their 
technology area. Also, patent laws and practices vary 
throughout the world and military inventions may not be 
made public. However, in general, growth of the number of 

patents correlates well with technology development 
activities and the method does have the advantage of 
simplicity [15].  

In his review paper, Martino explains the use of causal 
models for technology forecasting [10]. Causal models are 
characterized by variables whose relationships can be 
described by mathematical equations. The use of causal 
models is limited to forecasting the diffusion of emerging 
technologies where certain parameters such as substitution or 
imitation rates can be measured. Although causal models 
have been used for multiple decades, this is still an area of 
research. Some of the main research objectives are to 
determine the factors that influence the substitution and 
imitation coefficients and their values. One method is to use 
bibliometrics and patent analysis or, in general, bibliometric 
data. 

The models describing technology diffusion or adoption 
typically follow a sigmoid curve shape (also called an S-
curve). The S-curve is due to the changes in performance 
over the life of the technology. When the technology is first 
introduced its performance improves slowly due to a learning 
curve in developing the new technology. Once the initial 
hurdles are overcome the technology attracts significantly 
more technical talent and financial resources. At this point 
performance improves rapidly. Eventually, the technology 
reaches its useful limits, alternate technologies become more 
viable, and the improvement rate declines [16]–[18]. 

Technological forecasting with growth curves have been 
used in multiple fields over the last five decades [5], [19]. 
This quantitative approach uses trend extrapolation with the 
proposition that historical data on a technology can provide 
guidance to its trajectory [20].  The life cycle of a technology 
consists of four stages: introduction, growth, maturity, and 
decline [21]. Forecasting based on growth curves involves 
parameter estimation of the technology life cycle and hence 
the estimation of each stage of the life cycle. The term 
commonly used in the literature for the market adoption of a 
new technology is also referred to as “diffusion of 
innovations” [22], [23]. Innovation diffusion theory is now 
well established using many diffusion or growth models [10], 
[24]. 

The S-curves are also referred to as “growth curves”, 
“maturity curves”, “diffusion models”, or “adoption models”. 
The well-known models include: Fisher-Pry [25], Gompertz 
[26], [27], and Bass [28] named after their originators. In 
recent time more generalized models have been proposed that 
can be reduced to the above, however these still remain 
popular in the research community [10], [29], [30]. The 
Fisher-Pry model is generally appropriate for technology 
diffusion and life cycle forecasting. Hence, the authors have 
elected to implement this model first for the trend analysis of 
biosensor technologies applied to POC and medical IoT 
applications. The authors were unable to discover any prior 
study focused on biosensor growth curves with respect to 
POC and IoT. One recent patent analysis was on IoT but it 
was a general assessment to determine the main area of 
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patenting activity of IoT technologies and the top patent filers 
[31]. The major activity was in wireless networking with the 
top filers, LG, Ericsson, and Qualcomm, holding only about 
5% of the total patents. 

 
B. Medical Biosensor Technologies 

A biosensor utilizes the specificity of a biological 
molecule to convert a biological signal into an opto-
electronic, electrochemical, or piezoelectric signal. 
Specifically, a biosensor is used to analyze particular 
biological analytes, which can be liquid, gas, or solid [32]. 
Furthermore, biosensors are capable of enhancing the testing 
and measurement of various analytes. An analyte is a 
substance whose chemical or biological constituents are 
being identified, analyzed, and measured. Common analytes 
include glucose, lactate, urea, creatinine, cholesterol, uric 
acid, and DNA. Blood glucose is among the most commonly 
measured by biosensors. Accordingly, finger-prick glucose 
meters appear to be the most successful biosensor-based 
devices [33]. Already, a new generation of noninvasive blood 
monitoring biosensor techniques are being developed to 
avoid a finger prick [34].  

In the medical arena biosensors are described in terms of 
the analytes that they analyze. For example, a glucose sensor 
measures the glucose analyte. The goal may also be to 
measure multiple analytes with one device. In this case a 
multisensor would be employed in place of a typical single 
biosensor. An increased ability to measure analytes has 
allowed modern biosensors to handle more sophisticated 
tasks. For instance, biosensors are now capable of performing 
a variety of specific tasks, such as detecting deoxyribonucleic 
acid (DNA) sequences on silicon chips or allowing for a lab-
on-a-chip (also known as micro total analytical system, 
µTAS) analysis [35]. 

Biosensors can also be described with respect to the 
sample solution to be tested; solutions for this purpose 
include mainly blood, breath, and saliva [3]. In this paper the 
biosensors have been described only in terms of the three 
solution types since the objective is to gain an understanding 
of the overall trends based on samples for POC testing. Blood 
is a bodily fluid that can reveal significant information about 
the human condition. For example, there are a large number 
of analytes (more than a hundred) contained in blood such as 
glucose, triglycerides, low-density lipoprotein (LDL) 
cholesterol, creatine kinase, oxygen, and sodium [36]. All 
these can be tested using an appropriate specific type of 
“blood sensor.”  

Biosensor technology is starting to respond to high market 
demands by making more accessible sensors. Two major 
trends of biosensor technology have been established to 
create more portable, cost-effective, and operational sensors. 
The first trend is the movement towards implementing label-
free mechanisms in order to simplify operation. Label-free 
detection is defined as a biological sensing mechanism in 
which no staining, marking, or any other sort of label 
attachment is required for operation. The second is the 

integration of the biosensor readout component so that the 
technology can become more compact [3]. Both efforts are 
complemented by an increasing reliance on microscale and 
nanoscale technology, allowing for biosensors to realistically 
accommodate a large global population with POC and IoT.  
 
C. Point of Care Diagnostics 

In vitro diagnostics (IVDs) based on POC applications are 
gaining in acceptance because medical or laboratory staff and 
facilities are not essential to providing results [37].  IVD is a 
preferred method for diagnosis because it is non-invasive and 
the testing can be performed outside the body in a “test-tube”. 
Typically, samples of blood, saliva, urine, and other bodily 
fluids are taken as part of a health or disease management 
program. The samples do not require pre-preparation (or may 
require only a minimum amount of pre-preparation). In many 
cases, the tests produce results in a matter of seconds. This is 
in contrast to a hospital, clinic, or a physician’s office where 
the turnaround time of test results is in hours and days. The 
tests are simple to administer and interpretation of the results 
are easy.  

In today’s environment the POC devices are starting to 
migrate from single-use test materials to view a stripe or 
color on paper to portable or handheld electronic instruments 
that provide more comprehensive results. 

POC devices are increasingly based on emerging 
techniques such as molecular diagnostics for health and 
prevention, identification of a disease or a condition, and then 
for a treatment [38]. One common fluid sample for medical 
diagnostics is blood. Traditionally, molecular diagnostics 
using blood were limited to laboratories requiring preparation 
of the sample and sophisticated instrumentation. They also 
needed specialized technicians and were labor intensive. The 
new POC technologies using a drop of blood obtained from a 
tiny finger prick are in the process of replacing the traditional 
methods. The traditional lab-based technologies for 
molecular diagnostics such as enzyme-linked immunosorbent 
assay (ELISA), polymerase chain reaction (PCR), and mass 
spectrometry (MS) are being miniaturized and could be an 
integral part of portable or wearable POC devices in the 
foreseeable future using a lab-on-a-chip architecture [39], 
[40]. Biosensors are the first-in-line component of any POC 
application. Blood testing is very common together with 
testing of saliva, urine, and stool. However, if a consumer-
friendly environment is important than saliva and breath are 
easier to work with. Such may be the case for the internet of 
things (IoT) in a health and wellness application. 

 
D. Internet of things 

The “internet of things” is of growing interest to the 
global community [41].  The IoT concept has the long-term 
potential to impact every aspect of our lives. This point is 
elaborated in the next section on market trends. 

The expression “Internet of Things” (IoT), is accredited to 
Kevin Ashton, cofounder of the Auto-ID Center at the 
Massachusetts Institute of Technology, who originally coined 
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it in 1999 [42]. It is a mainstream term now. The 
International Telecommunication Union (ITU) is the 
international standards body responsible for IoT definitions 
and recommendations. It defines the Internet of Things (IoT) 
as “A global infrastructure for the information society, 
enabling advanced services by interconnecting (physical and 
virtual) things based on existing and evolving interoperable 
information and communication technologies. Note 1-
Through the exploitation of identification, data capture, 
processing and communication capabilities, the IoT makes 
full use of things to offer services to all kinds of applications, 
whilst ensuring that security and privacy requirements are 
fulfilled. Note 2 - From a broader perspective, the IoT can be 
perceived as a vision with technological and societal 
implications” [43]. 

In the context of this research, IoT refers to wearable or 
portable devices such as smart watches, cardiac monitors, and 
glucose monitors embedded with electronics, software, 
sensors (including biosensors), and network connectivity that 
enable the acquisition and exchange of data. This is machine-
to-machine (M2M) communications. 
 

II. MARKET TRENDS FOR BIOSENSORS, POINT OF 
CARE, AND INTERNET OF THINGS 

 
A. Biosensors and Point of Care Diagnostics 

Biosensor technologies have grown dramatically over the 
past couple of decades, making them valuable for technology 
forecasting [32]. The global market was $12 billion in 2013 
and is expected to be about $23 billion by 2020 with an 
estimated CAGR of 10% from 2014 to 2020 [33] (Figure 2). 
This high demand increases as technology improves, 
allowing for biosensors to improve in accuracy and 
versatility.   

 

 
Figure 2: Global Biosensors Market by End-Use (USD Million) [33] 

 
Six major vertical markets exist for biosensors: point of 

care (POC), home diagnostics, environmental, research 
laboratories, process industries, and biodefense [44].  POC 
and home diagnostics represent the two largest groups of 
biosensors. The POC market is the largest and represents 
about 45% of the total biosensor market for 2016 (Figure 3). 

 

 
Figure 3: Global Biosensors Market:  Percent of Revenues by Vertical 

Markets for 2009 and 2016 [44] 

 
Biosensors are used in over 50 diverse end-user 

applications (Figure 4) and the number of applications is 
increasing significantly each year. Glucose monitoring is the 
dominant application because of the POC and home 
diagnostics markets. However, biosensor use in sectors such 
as process industries, environmental monitoring, security, and 
biodefense is growing rapidly. The biosensors associated with 
blood samples are also being developed for many specific 
types of analytes beyond glucose. 
 

 
Figure 4: Global Biosensors Market: Percent Revenues By End-User 

Applications (2009) [28] 
 
Commercial development of biosensors for health care 

has taken on a greater priority as the biosensor market 
becomes larger. Specifically, patient biochemical profiles 
must often be monitored before treatment, which can be most 
efficiently accomplished through biosensors. As a result, the 
physician can focus on the treatment instead of the 
measurement of the particular analytes related to their 
disease.  Because of their increasing technical accuracy and 
convenience, biosensors can be aptly used for self-testing and 
care at home. Therefore, the forecasting of biosensor allows 
for assessing the fastest growing technologies that can be 
used clinically. Furthermore, there may be a convergence of 
POC and home care devices. With miniaturization, some of 
these may form part of IoT in the long term. This research 

3085

2016 Proceedings of PICMET '16: Technology Management for Social Innovation



explores the evolution of medical biosensors that analyze 
blood, saliva, and breath individually and as a group. 
 
B. Internet of things 

According to Gartner’s research report on emerging 
technologies the new phenomena of IoT will have a 
transformational societal and business impact [45]. Adoption 
is expected to reach the mainstream in 5 to 10 years. 

IoT will potentially impact healthcare with offerings of 
consumer wearable devices, home monitoring systems, and 
clinical instruments for physicians [46]. IoT based on 
biosensors can add a diverse portfolio of tools to address 
chronic disease management and population health and 
wellness. Through IoT, the cost of monitored care may also 
be reduced. The remote monitoring healthcare market 
segment is expected to grow from about $400 million in 2014 
to $980 million by 2020 [46]. Geriatric and young patients 
are seeking technology-based treatments and options that can 
help them with the management of their chronic diseases. 
Such diseases are vast and diverse and include: diabetes, 
chronic obstructive pulmonary disease (COPD), 
cardiovascular disease (heart attacks and stroke), arthritis, 
cancer, obesity, oral health problems, and epilepsy. 

Gartner claims that IoT is one of the top strategic 
technology trends and Cisco forecasts that 50 billion smart 
devices will be connected by 2020 [2] (Figure 5). Cisco 
names this as the “internet of everything”. Cisco defines the 
Internet of Everything (IoE) “as bringing together people, 
process, data, and things to make networked connections 
more relevant and valuable than ever before — turning 
information into actions that create new capabilities, richer 
experiences, and unprecedented economic opportunity for 
businesses, individuals, and countries.” The networking of 
these devices will enable a “mega-market” due to a 
convergence of large markets such as healthcare, home and 
building automation, automotive, and information and 
communications technologies (ICT). This market is projected 
to be in excess of $14 trillion. Also, major technology 
companies such as Siemens, Ericsson, and Bosch will be 
supplemented by many other diverse companies ranging from 
media and logistics to pharmaceuticals as they converge on 
IoT platforms. 

 

 
Figure 5: Growth Trends of the Things Connected to the Internet [2] 

Cisco states that the connected healthcare and patient 
monitoring market for IoE is projected to be $106 billion by 
2020. IoE will provide better data-driven patient management 
and this in-turn will result in more efficient and effective 
healthcare. A summary of the current state of healthcare and 
improvements due to IoE is shown in Table 2. 

 

TABLE 2: CURRENT HEALTHCARE STATE AND POTENTIAL 
HEALTHCARE STATE WITH IINTERNET OF EVERYTHING (IoE) [2] 

2013 
Current State (without IoE) 

2022 
Potential with IoE 

Long hospital stays to ensure 
patients can thrive at home after 
discharge. 

Reduced costs and improved 
quality of life from shorter 
hospital stays with home 
monitoring systems that ensure 
health. 

Limited number of health 
conditions with home monitoring 
capabilities. 

Wider number of health conditions 
with home monitoring capabilities. 

Uncoordinated and manual 
collection of patient test records. 

Improved decision making from 
single electronic collection of 
patient records. 

Ad-hoc interpretation of medical 
test results and conditions. 

Improved patient care from 
standardized treatments that 
conform to best practices. 

Multiple doctors offer care in an 
uncoordinated manner. 

Improved patient care and health 
outcomes from consolidated, 
patient-centric views of all 
treatment aspects. 

 
III. TECHNOLOGY FORECASTING WITH FISHER-PRY 

MODEL 
 

One type of life cycle growth curves are based on 
technology substitution. Such curves assume the substitution 
of an older technology by a newer one. This applies to 
biosensors.  A prominent example of the substitution curve is 
the Fisher-Pry Model [25]. It is also known as the Fisher-Pry 
Analysis and the Fisher-Pry Diffusion Model. Fisher-Pry 
forecasting is similar to the growth of biological systems. 
This method projects the diffusion rate of new and 
technically superior technologies. Conversely, it can also 
project the replacement of old and inferior technologies. In 
this paper, diffusion indicates the progression along the 
technology life cycle. This mathematical technique follows 
the Logistic (or Logit) curve pattern. It is sigmoid shaped and 
symmetrical around the midpoint, that is, the midpoint is also 
the point of inflection. The inflection point is the point where 
technology curve reaches its maximum growth rate. It is also 
a point of reference to compare different S-curves. 

One form, known as the Pearl curve form, is represented 
by the equation below (Equation 1, Figure 6) [15], [47]. 

 

௒ಷು
௅ି௒ಷು

ൌ 10஺ି஻௧  
 

YFP: Fisher-Pry curve 
L: Normalized upper growth limit (100) 
t: Time in years 
A: Time at which diffusion begins 
B: Rate at which diffusion will occur 

 

Equation 1: Fisher-Pry Forecasting Model [47] 
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Figure 6: General Form of the Fisher-Pry Curve 

 
The Fisher-Pry substitution shape (YFP) is determined by 

two parameters (A and B). One parameter (A) determines the 
starting point of the diffusion or substitution and the second 
parameter (B) determines the rate of diffusion. The two 
parameters are determined from early diffusion data. This 
data can be derived from data mining of patents, journal 
articles, and conference proceedings.  

The Fisher-Pry equation can be converted to linear form 
as (Equation 2): 

	݃݋ܮ ൬ ிܻ௉

ܮ െ ிܻ௉
൰ ൌ ܣ െ  ݐܤ

Equation 2: Log Form of Fisher-Pry Forecasting Model 

 
Then linear regression is applied on the cumulative annual 

data to determine A and B as the intercept and slope of a 
straight line. 

The resulting pattern can be used to extrapolate or project 
the time that diffusion will reach a given stage from 
introduction to decline. This forecasting technique has been 
used in multiple fields such as communications and consumer 
electronics to show how the installed base of equipment will 
change over time [47], [48]. 

 
IV. RESEARCH QUESTIONS 

 
This goal of this research is to gain an understanding of 

the level of technology maturity for the initial three types of 
biosensors namely, blood, saliva, and breath that could drive 
medical POC and IoT applications.  The authors have elected 
to use bibliometric and patent data with the Fisher-Pry model 
in this research. The approach is shown in Figure 7. 

The specific research questions relate to these three 
biosensor types and include: 
1. Which one of the three biosensor technologies—blood, 

saliva, and breath— is the most technologically mature? 
2. What is the maturity progression of the other two 

biosensor technologies? 
3. Can we make predictions from the results about the 

technology maturity and life cycle of the three biosensor 
technologies? 
 

 

 
Figure 7: Point of Care (POC) and Internet of Things (IoT) Biosensors 

Forecasting Model 

 
V. BIBLIOMETRIC AND PATENT DATA SOURCES 

 
For this research, the sources of bibliometrics were well-

established academic databases and data for the patent 
analysis was globally sourced from multiple national and 
international patent databases. The following table 
summarizes the sources (Table 3). 

 

TABLE 3: DATA MINING SOURCES FOR BIBLIOMETRICS AND 
PATENT ANALYSIS 

Research Task Data Source Database Publisher 
Bibliometrics Science 

Citation Index 
(SCI) 

Web of Science Thomson 
Reuters 

Bibliometrics Engineering 
Index 

Compendex 
(Engineering 
Village) 

Elsevier 

Patent Analysis United States 
Patent and 
Trademark 
Office 

USPTO United States 

Patent Analysis International 
Patent 
Cooperation 
Treaty (PCT) 

PATENTSCOP
E 

World 
Intellectual 
Patent Treaty 
Organization 
(WIPO) 

Patent Analysis European 
Patent Office 

EPO European Union 

Patent Analysis Japan Patent 
Office 

JPO Japan 

Patent Analysis Korean 
Intellectual 
Property Office 

KIPO Republic of 
Korea 

Patent Analysis China Patent 
and Trademark 
Office 

CPTO China 

 

Biosensor Data
(for Biosensors as 

Emerging 
Technologies)

Worldwide Patents
Worldwide Scientific 
and Engineering 
Publications

Patent Analysis 
Based on Yearly 
Patents Count

Bibliometrics Based 
on Yearly 

Publications Count

Trend Analysis Using 
Fisher‐Pry Modeling

Maturity Status of 
Three Biosensor 

Types (Blood, Saliva, 
and Breath)
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The global patent analysis for annual patent count was 
carried out using AcclaimIP, a software package that accesses 
the major patent databases worldwide [49]. 

For this initial forecasting study the following keywords 
were used for obtaining data in both bibliometrics and patent 
analysis: 
 Biosensors 
 Biosensors and blood 
 Biosensors and saliva 
 Biosensors and breath 

 
Since this is the first known study of such trend 

extrapolation for blood, saliva, and breath biosensors only 
basic keywords were used. The authors anticipate that future 
research will include more specific keywords and terms to 
address very specific types of biosensors. 

 
VI. RESULTS 

 
The research revealed that the number of patents for all 

types of biosensors was significantly more than the number 
of publications. This implied that basic and applied research 
was much less than commercial development. The number of 
patents totaled about 55,500 since their inception in 1982 
whereas the number of scholarly publications totaled only 
about 26,000. (Also refer to the Appendix for annual counts 
of patents filed and publications for biosensors.) Furthermore, 
the research publications for saliva and breath biosensors 
totaled only about 100 over the same period. Hence, the 
results from the patent analysis are discussed first, followed 
by bibliometrics.  
 
A. Patent Analysis 

The worldwide patent databases were searched for 
biosensors to determine the total number of patents per year. 
The growth until around 2008 and then the decline are 
indicated in Figure 8. 
 

 
Figure 8: Patents Filed for Biosensors: All Types, Blood, Saliva, and Breath 

 
The Fisher-Pry patent curve for all types of biosensors is 

calculated first by determining the two parameters A and B. 

This is depicted in Figure 9. In this case A is -304.33 and B is 
0.15. Then the patent data are extrapolated to beyond 2024 
with the Fisher-Pry curve (Figure 10). The actual historical 
patent data are represented as “percent biosensor patents 
penetration.” In this paper, “penetration” refers to the 
cumulative patent or publication count that has been achieved 
with respect to the upper growth limit, L. 

The upper growth limit, L, was estimated by first taking 
the cumulative patent number for all biosensors from 1982 to 
2015 and then increasing that by 10%. The result was 61,041. 
Then this number was rounded to 62,000 to represent 100% 
penetration or full maturity. The authors understand that this 
is only a first level estimation but since L is unknown, this 
value was used as a basis for this study. The curve fitting of 
“percent biosensor patents penetration” to the Fisher-Pry 
curve in Figure 10 indicates that this may be a reasonable 
initial estimate. This value of L to represent 100% penetration 
is maintained for Figure 11, Figure 12, and Figure 13. 

For the sake of avoiding repetition the figures depicting 
linear regression for parameters A and B are not shown for 
the other Fisher-Pry curves discussed later. 

 

 
Figure 9: Using Linear Regression to Determine Parameters A and B for 

Biosensor Patents Fisher-Pry Curve (All Biosensor Types) 

 

 
Figure 10: Biosensor Patents Fisher-Pry Curve (All Biosensor Types) 

 
The following three figures depict the patent Fisher-Pry 

curves for blood, saliva, and breath biosensors respectively 
(Figure 11, Figure 12, and Figure 13). 
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Figure 11: Fisher-Pry Curve: Patents Filed for Blood Biosensors 

 

 
Figure 12: Fisher-Pry Curve: Patents Filed for Saliva Biosensors 

 

 
Figure 13: Fisher-Pry Curve: Patents Filed for Breath Biosensors 

 
By overlaying all the patent biosensor Fisher-Pry curves 

and considering the technology maturity midpoint, the 
relative maturity levels of the different types of biosensors 
can be determined (Figure 14). The midpoint occurred in 
2006 for all types of biosensors. The blood biosensors had the 
midpoint in 2009, a 3 year lag and will not reach their upper 
bound (L) before 2025. This implies continued, yet 
decreasing, growth in technology diffusion and innovation for 

the next decade. The midpoints will be in 2017 and 2023 for 
saliva and breath respectively representing lags of 8 and 6 
years with respect to the preceding blood biosensor 
technologies. 

 

 
Figure 14: Comparison of Patent Biosensor Fisher-Pry Curves 

 
Cumulative patent application numbers represented in the 

Fisher-Pry curves serve as indicators for technological 
diffusion trends, development, and life cycle stage [50], [51]. 
Patent growth in a particular technology tends to follow an s-
shaped curve. When a new technology is introduced the 
number of patents is limited. This is followed by a growth 
period with increasing patent filings and grants Eventually, a 
plateau is reached [52]. 

However, it is not clear if this applies across all industries. 
A study by Yoon and Lee discovered that one of the 
industries that is favorably represented by patent analysis for 
forecasting is biotechnology [53]. Hence, these indicators 
may prove useful for biosensors. 

 
B. Bibliometrics 

The biosensor publications count per year is based on the 
Web of Science database and is shown in Figure 15. The Web 
of Science citation database, with over 1 billion entries 
covering 53,000 major journals and books uses the Science 
Citation Index and other sources. Although the total number 
of publications for biosensors is increasing at a reasonable 
rate the blood, saliva, and breath biosensor related 
publications are flat and nominal. 

The value of the upper growth limit, L, is estimated to be 
30,000 based on the same approach as discussed earlier under 
the patents section. 

Similar to the patent analysis based calculations, the 
Biosensor Publications are shown in Figure 16. 

The following three figures depict the publications Fisher-
Pry curves for blood, saliva, and breath biosensors 
respectively (Figure 17, Figure 18, and Figure 19). 
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Figure 15: Biosensor Publications: All Types, Blood, Saliva, and Breath 

 

 
Figure 16: Biosensor Publications Fisher-Pry Curve (All Biosensor Types) 

 

 
Figure 17: Fisher-Pry Curve: Blood Biosensor Publications 

 

 
Figure 18: Fisher-Pry Curve: Saliva Biosensor Publications 

 
Figure 19: Fisher-Pry Curve: Breath Biosensor Publications 

 
The combined Biosensor Publications Fisher-Pry curves 

are shown in Figure 20. The technology diffusion midpoint is 
considered to compare the relative maturity levels of the 
different types of biosensors. The midpoint occurred in 2008 
for all types of biosensors combined. According to these 
curves the midpoint will occur beyond 2025 for the blood, 
saliva, and breath biosensors. It is not clear if the 
bibliometrics results are useful. This is discussed in the 
conclusion. 

 

 
Figure 20: Comparison of Biosensor Publications Fisher-Pry Curves 

 
VII. TEST COMPARISON OF FISHER-PRY CURVE 

RESULTS WITH GOMPERTZ CURVE 
 

To test if the Fisher-Pry curves are better for growth curve 
modeling of biosensor technologies, the Gompertz curve was 
calculated for one test case using the global patent data for all 
types of biosensors. 

The Gompertz model was initially designed for use in 
demographic studies and human mortality [26] and has been 
applied to technology forecasting [16], [54]. In the emerging 
technology context the law implies that the maturation and 
exit of older technologies make way for new technologies to 
drive the evolution process [55]. 

The Gompertz curve is similar to the Fisher-Pry curve but 
it is not symmetrical about the inflection point and reaches it 
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early in the growth trend (Equation 3). (The inflection point 
of Fisher-Pry curve is at the midpoint or 50% maturity 
whereas it is at 36.8% for Gompertz. This is characteristic of 
the curves.) 

 

ܻீ ൌ 10ି஺ଵ଴ܮ
షಳ೟

  
 
YG: Gompertz curve 
L: Normalized upper growth limit (100) 
t: Time in years 
A: Time at which diffusion begins 
B: Rate at which diffusion will occur 

 
Equation 3: Gompertz Forecasting Model [54] 

 
Similar to the calculations for the Fisher-Pry curve, the 

Gompertz curve (YG) is determined by two parameters (A 
and B). One parameter (A) determines the starting point of 
the diffusion and the second parameter (B) determines the 
rate of diffusion. The Gompertz equation can also be 
converted to linear form as (Equation 4): 

 

	݃݋ܮ ൬݃݋ܮሺ
ܮ
ܻீ
ሻ൰ ൌ ܣ݃݋ܮ െ  ݐܤ

 
Equation 4: Log Linear Form of Gompertz Forecasting Model 

 
Then linear regression can be applied on the cumulative 

annual data to determine Log A (and hence, A as 10LogA) and 
B as the intercept and slope of a straight line (Figure 21). The 
resulting Gompertz Curve is shown in comparison to the 
Fisher-Pry curve for this case in Figure 22. The Fisher-Pry is 
a better fit especially up till the technology maturity 
midpoint. (The “% biosensor patents penetration” is the 
actual maturity curve based on annual patent count.) Then it 
tends to overestimate the growth and maturation, that is, the 
technology matures later than predicted. The Gompertz curve 
overestimates the maturity curve until it reaches about 57% 
growth and then tends to underestimate. 

 

 
Figure 21: Using Linear Regression to Determine Parameters A and B for 

Biosensor Patents Gompertz Curve (All Biosensor Types) 

 

 
Figure 22: Comparison of Gompertz and Fisher-Pry Curves for Biosensor 

Patents (All Biosensor Types) 

 
VIII. CONCLUSION 

 
The Fisher-Pry projections or S-curves enable insights 

into the relative technology maturity levels of the emerging 
biosensor technologies under consideration and forecasting 
their growth. It also appears that the Fisher-Pry model is a 
better fit than the Gompertz model. Patent analysis indicated 
that blood biosensors reached the maturity midpoint in 2009 
with saliva and breath biosensors lagging by 8 and 14 years 
respectively.  From a life cycle perspective and based on this 
information, it may be assumed that blood biosensors are in 
late growth or early maturity, saliva biosensors are in the 
growth stage, and breath biosensors are in their infancy. 
Bibliometrics implied that the midpoint would occur beyond 
2025. Patent analysis forecasted significantly earlier 
technology diffusion than bibliometrics. This is mainly due to 
the fact that the annual patent numbers (data points) and 
increments are significantly more than the annual publication 
numbers. The cumulative patent growth may indicate that the 
industry has accepted biosensor technologies and considers 
them to be viable. Hence, it is likely that biosensors will 
continue to be used in a variety of devices. Biosensor devices 
using blood samples appear to be heading towards maturity 
and saliva biosensors will follow beyond 2024. Breath 
biosensors are still in the introduction stage. It is the intention 
of the authors to develop further blood biosensor S-curves for 
specific analyte types such as glucose, cholesterol, cardiac 
biomarkers, and diverse infectious diseases. In these cases the 
upper limit, L will be reduced and determined by the total 
number of patents for blood glucose biosensors. 

In this research bibliometrics based on annual publication 
count implied that saliva and breath biosensors were still in 
the very early stages of development with very few 
publications. This was based on the Web of Science database. 
A check was then performed using the Compendex database 
and similar results were obtained. A second check was done 
with the LexisNexis database and it also resulted in few 
publications for these biosensors. (LexisNexis contains 
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records of global newspapers, magazines, trade journals, and 
web publications.) At this point it may be concluded that 
bibliometrics does not bring much forecasting value for this 
research. 
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APPENDIX 

 
TABLE 4: PATENTS FILED FOR BIOSENSORS WORLDWIDE: ALL 

TYPES, BLOOD, SALIVA, AND BREATH 
Year Biosensor Patents Filed Per Year 

All Types Blood Saliva Breath 
1982 1 
1983 1 1 
1984 7* 12 
1985 14 12 1 
1986 44 14 1 
1987 73 29 1 
1988 108 42 6 0 
1989 164 57 15 0 
1990 183 70 4 0 
1991 220 65 1 3 
1992 196 118 12 0 
1993 315 147 18 2 
1994 320 192 29 6 
1995 476 309 35 9 
1996 459 353 39 8 
1997 762 450 49 6 
1998 795* 735 149 15 
1999 1039* 882 173 29 
2000 1332 1007 248 23 
2001 2977 2017 707 52 
2002 4802 2236 643 144 
2003 3176 2219 475 101 
2004 3220 2309 498 132 
2005 3642 2471 555 131 
2006 3989* 3199 866 161 
2007 4567* 3521 864 249 
2008 4140* 3347 831 178 
2009 3713* 3082 680 187 
2010 3570 2756 601 167 
2011 3550* 2718 670 164 
2012 3291 2586 543 130 
2013 2579* 2273 506 105 
2014 1767* 1723 409 87 
Totals 55,492 40,952 9,626 2,092 

*In some cases data mining using AcclaimIP resulted in the number of 
annual patents for all biosensors types being less than the sum of the number 
of the blood, saliva, and breath biosensors.  The reason for this is still 
unclear. This may be due to the AcclaimIP search methodology or how data 
mining is performed within the diverse patent databases covered. The 
resolution remains under investigation. 

 

TABLE 5: PUBLICATIONS FOR BIOSENSORS WORLDWIDE: ALL 
TYPES, BLOOD, SALIVA, AND BREATH 

Year Biosensor Publications Per Year 
All Types Blood Saliva Breath 

1982 5 
1983 2 
1984 10 
1985 23 
1986 21 
1987 48 
1988 48 
1989 47 
1990 68 
1991 196 21 
1992 190 21 
1993 268 36 
1994 283 19 
1995 376 41 2 
1996 377 28 
1997 405 29 
1998 363 19 
1999 441 20 
2000 459 20 
2001 531 29 
2002 558 26 2 
2003 671 25 
2004 839 30 
2005 962 32 6 
2006 1141 41 2 
2007 1341 64 5 
2008 1757 75 5 6 
2009 2105 71 5 3 
2010 2182 76 8 8 
2011 2361 100 3 5 
2012 2525 114 4 10 
2013 2648 154 3 5 
2014 2798 144 12 11 
Totals 26,049 1,235 47 58 
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