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Abstract--Nanocarbon materials made from graphite are used 

in diverse applications as semiconductors, fuel cells, optical 
devices, and structural materials because of their excellent 
mechanical, electrical, and thermal characteristics. Numerous 
papers are published annually in this area, and thus it is difficult 
to assess overall development in the field. Consequently, there is 
a need for approaches that predict advances from diverse and 
numerous sources of information. In this study, we used machine 
learning to examine papers on nanocarbon materials and related 
topics and to predict papers with emerging ideas that are 
expected to grow in popularity. We specifically predicted 
emerging papers that were ranked in the top 5% by number of 
citations. A total of 411,084 related papers were extracted from 
the Web of Science Core Collection (Thomson Reuters). A 
time-expanded network was produced from these data using 
citation links, and features of each paper were used as 
explanatory variables to build a prediction model. In this model, 
9 of the top 10 papers from 2011 predicted to be emerging 
satisfied the conditions for emerging papers. These results 
suggest that the model can predict the direction of nanocarbon 
materials technology, which is of considerable value for private 
companies and research institutions. 
 

I. INTRODUCTION 
 
Nanocarbon material is a general term referring to material 

made from graphite, carbon nanotubes, graphene, and 
fullerene. These materials have appeared in succession over a 
short time, despite the long history of carbon. In 1985, Kroto et 
al. discovered fullerene, the C60 molecule [1]; in 1991, Iijima 
discovered nanotubes; and in 2004, Novoselov et al. 
discovered graphene [2]. These are 0-, 1-, and 2-dimensional 
nanocarbon materials with characteristic features and many 
potential applications. Nanocarbon materials are used in 
diverse applications as semiconductors, fuel cells, optical 
devices, and structural materials because of their excellent 
mechanical, electrical, and thermal characteristics, and these 
materials may be useful in the energy sector [3-7] or as space 
elevators [8-10]. 

In this field, the number of related research papers is 
increasing rapidly, making it difficult to grasp the current 
landscape and have foresight, especially when restricted by 
time and resource constraints. One method that is often 
performed in technology prediction, as represented by the 
Delphi method [11], is to select experts with detailed 
knowledge in specific science and technology fields, and ask 
for their opinions. These methods use interviews and 
questionnaires answered by experts to gain new insights into 
the future direction of research and technology. Ever since the 

Delphi method was proposed in the 1950’s, it has been widely 
utilized to predict trends in science and technology. However, 
due to quantitative and structural changes in academic 
knowledge, a number of issues have been raised regarding this 
method in recent years, including that there are always 
subsections within a field. Thus, the results can change 
depending on the selected experts. In addition, there has been a 
marked increase in the volume of information, and a single 
person can no longer comprehend everything in a research 
field. 

Increasingly, governments and researchers are demanding 
procedures through which they can identify advances in 
emerging research fields using the huge amount of available 
information. The amount of data and increasingly finely 
segmented research fields require development of innovative 
data-oriented techniques. Knowledge on nanocarbon materials 
technology has expanded, due to the broad range of potential 
applications in diverse areas, and this has resulted in a 
complex knowledge structure. In addition, in technology fields 
with strong science links, such as nanocarbon materials, 
academic papers are important as information for future 
technology trends. 

In this report, we propose a method that uses machine 
learning to predict emerging papers in specific areas of 
nanocarbon research. An emerging paper is defined as one that 
might develop into an important area of research, but was not 
in the spotlight at the time of publication. Several procedures 
have been proposed to identify emerging research that might 
eventually produce substantial progress in a field.  
 
Previous research 

Research related to the prediction of emerging papers has 
been performed in bibliometrics and library and information 
science. With increasing awareness of big data in recent years, 
similar research is being performed in computer science 
sub-fields, particularly in data mining and information 
searching, which use research metadata on a large-scale. 
Winnink & Tijssen examined prediction of emerging research 
based on bibliographic information for Nobel Prize papers in 
fields related to graphene research [12]. Goffman & Newill are 
well-known for their comparison of information propagation 
to propagation of infectious diseases [13], and Bettencourt et 
al. used the SIR model, an infectious disease propagation 
model, to describe the propagation of newly appearing fields 
in existing fields [14]. Chen et al. used a co-citation network 
for academic papers and a joint research network to link 
innovative discoveries to stimulate research that filled 
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structural holes in networks [15]. Young classified technology 
growth curves into nine types and performed a test to 
determine a growth curve model that can be fit to multiple 
datasets and perform the best predictions [16]. 

While emerging papers, by definition, do not receive much 
attention immediately after publication, they do contain great 
possibilities for the future. Adams showed a correlation 
between citation numbers from one to two years and three to 
ten years after publication of a paper in the life and physical 
sciences [17]. Li & Tong [18] formulated an optimization 
problem that predicted paper citation numbers using 500,000 
papers from computer science, and predicted the number of 
citations they would receive after 10 years based on 
information three years after publication. In this research, 
citations in the three years after publication were shown to 
influence the number of citations after ten years. Based on 
analysis of two million computer science papers, Dong et al. 
[19] showed that the author's h-index five years after 
publication of a paper could be predicted, with the impact of 
the paper defined by six factors: author, joint authorship, 
content, publisher, citation count, and time lineage. Davletov 
et al. [20] predicted citation numbers five and ten years after 
publication, using time series information on the citation 
number several years after publication and information on the 
citation network structure, using 27,000 arXiv energy physics 
papers, 1.5 million computer science papers (ArnetMiner), and 
2 million additional papers (CiteSeerX). The time series of the 
citation number in the two years after publication was found to 
be important for prediction [20]. Chakraborty et al. [21] 
showed that the number of citations after five years can be 
predicted from citation numbers several years after 
publication, together with data for the author, academic 
association, and keywords, based on 1.5 million computer 
science papers. The number of papers by the authors and the 
citation number one year after publication were found to be 
important to predict the future influence of the paper [21]. 
Wang et al. [22] used the power law for a paper's citation 
number, and created a formulation predicting the future 
citation number from time series information for the citation 
number five years after publication. Papers from Physical 
Review B, PNAS, and Cell were used to predict the citation 
number for a paper 25 years later, with a prediction accuracy 
of 90% [22]. 

These studies of prediction of emerging papers, and 
particularly prediction of the citation number or impact, have 
mainly used predictions based on time series of citation 
numbers several years after publication. This indicates that 
citation trends several years after publication are a good 
indicator of citation numbers after that period, but also shows 
that observation over many years is required for prediction. 
This limits early detection, but is useful for research that is 
focused on several years after publication. In contrast, Rogers 
defined “early adopters” or an “early majority” in “diffusion of 
innovation” as papers with information that immediately 

induced action in their fields [23]. To become an “innovator”, 
judgment is needed immediately after publication. In this 
report, we describe a model to predict papers with a high 
probability of increased citation in the near future (three years 
after publication) solely from information found immediately 
after publication (less than one year). We used this method to 
predict emerging papers in the nanocarbon materials field. 
 

II. METHODOLOGY 
 
The methodology is divided into four categories: data 

acquisition, construction of features, construction of the 
prediction model, and evaluation of the prediction model, as 
described below. 
 
A. Data acquisition 

Papers incorporating "nano*” and “carbon*" in the paper 
title, abstract, or keywords were extracted from the Thomson 
Web of Science Core Collection. We targeted journal papers 
and did not include international conference proceedings. 
Papers were extracted based on target fields, including title, 
abstract, author name, year of publication, and citation-related 
information, over the period from January 1901 to November 
2015. We also collected information on all citation data on 
papers not indexed in the Web of Science, via API. This 
information is handled as correct data in construction of 
prediction models. 
 
B. Construction of features 

From the extracted data, we created a citation network for 
each year up to the present year, with all papers as nodes. From 
the created time expanded network, we extracted features for 
the following classes in each paper in each year. Here, the 
constructed features are used to express learning data for 
prediction of emerging papers. The constructed features used 
in the prediction model can be divided broadly into four 
classes: network features, cluster features, centrality features, 
and citation-related features. A summary of the respective 
features is shown in Table 1. The network feature expresses 
the general features of the citation network in which the papers 
are incorporated. The cluster feature expresses the cluster 
features in which the papers are incorporated. A cluster is a 
group of papers that are cited within a specific region of the 
citation network. We constructed a community extraction 
algorithm that has been modularity-maximized in relation to 
the network [24]. The centrality feature expresses the degree 
of centrality of papers in the citation network structure, and the 
degree of centrality can be quantified at multiple viewpoints 
[25-31]. The citation-related features set the statistical 
summary values (maximum, minimum, average, and total) of 
the papers cited by the targeted paper. A total of 63 features 
were used. All features were incorporated into the maximum 
component of the time expanded network created each year. 

 
 

2637

2016 Proceedings of PICMET '16: Technology Management for Social Innovation



 

TABLE 1. FEATURE VALUES FOR PREDICTION OF EMERGING PAPERS 
Classification of 

features 
Name of feature Description Ref. 

Network Target data set, target fiscal year network feature  

NW_NODES Number of papers incorporated into network  
NW_EDGES Number of citation links incorporated into network  
NW_MAXQ Maximum value of cluster Q value incorporated into network [24] 

Cluster Feature value resident in cluster where target paper resides  

CL_QMAX Maximum value of Q value in cluster where target paper resides [24] 
CL_NODES Node number of cluster where target paper resides  

  CL_RANK Ranking of cluster where target paper resides  

Centrality Network centrality of target paper  

CNT_DEGRE Degree centrality [25] 
CNT_BETWE Betweenness centrality [26] 
CNT_CLOSE Closeness centrality [25] 
CNT_EIGEN Eigenvector centrality [27] 
CNT_NETWO Network constraint [28] 
CNT_CLUST Clustering coefficient [29] 
CNT_PAGER PageRank [30] 
CNT_HUBSC Hub Score [31] 

  CNT_AUTHOR Authority Score [31] 

Citation For papers cited by the targeted paper, each feature is tabulated  

CITING_MAX-[feature] Maximum value of the feature in the cited papers  
CITING_MIN-[feature] Minimum value of the feature in the cited papers  
CITING_AVG-[feature] Average value of the feature in the cited papers  
CITING_SUM-[feature] Total value of the feature in the cited papers  

 
C. Construction of the prediction model 

We defined emerging papers as those for which citation 
three years after (t0+3) publication at t0 is in the top 5% of all 
papers published in that year (t0). Li and Tong showed that 
information three years after publication is useful for 
prediction of the number of citations after 10 years. Therefore, 
we assumed that a three-year window is sufficient to predict 
future citations. Since many papers are published yearly in the 
nanomaterial field, 10% will exceed 5,000 papers in a few 
years. Therefore, if the emerging paper cut-off was set at 10%, 
there will be too many emerging papers for assessment. 
Additionally, in a statistical context, 5% probability is 
well-known clinically. We constructed a model that extracts 
features of emerging papers. In the model, data at three years 
after publication (t0+3) are used as correct data and applied for 
prediction four years later (t0+4=t1). Data for year t1 is referred 

to as prediction target year data. To evaluate the performance 
of the model, the citation number at three years after the 
prediction target year (t1+3) is required. Figure 1 shows the 
relationship between the learning target period and prediction 
target period. 

For example, if 2011 was the prediction target year (t1), 
model construction requires features data based on the citation 
network up to the year 2007 (t0), and the correct data at t0+3. 
This is called the “2007 model”. We apply this “2007 model” 
to the paper dataset published in 2011 (t1=t0+4) to perform 
prediction. Evaluation of this prediction model is conducted 
using the citation number information at the end of 2014 
(t1+3). Table 2 shows the data for emerging papers for the 
prediction target year and the prediction results verification 
year from the “2002 model” to the “2007 model”. 

 

 
 

Figure 1. Model training and prediction 
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TABLE 2. MODEL TRAINING YEAR AND CORRESPONDING TARGET AND EVALUATION YEARS 
Training window Testing window 

Model training year 
t0 

Correct data 
(training citation data) 

confirmation year 
t0+3 

Prediction target year 
t1 

Prediction model evaluation year 
t1+3 

2002 2005 2006 2009 
2003 2006 2007 2010 
2004 2007 2008 2011 
2005 2008 2009 2012 
2006 2009 2010 2013 
2007 2010 2011 2014 

 

To construct the model, we used statistical machine 
learning. This prediction task can be explained by the 
supervised machine learning approach, in which a computer 
receives a series of input data (features) and corresponding 
correct data, and detects errors by comparison between output 
from an algorithm and correct data. In this study, the input data 
are features and correct data are data indicating whether the 
paper is emerging. Using knowledge from the data 
confirmation year, items that become emerging papers are 
assigned a flag "1" and treated as positive. Papers with citation 
numbers in the bottom 50% are assigned a flag "0" and treated 
as negative. These binary assignments were used as correct 
data (in other words, response variables). We constructed a 
model to describe the response variables using the features (in 
other words, explanatory variables) calculated as shown 
above.  

In the analysis, we utilized logistic regression, a linear 
classifier, and LIBLINEAR in the analysis package [32]. A 
logistic regression model provides a probability that a 
response variable will be “1”. That is, the probability indicates 
whether a paper will be emerging or not. The prediction model 
is constructed using learning weights for each feature in linear 
equations. Utilizing the logistic regression model, the 
algorithm detects features with high impact for prediction of 
emerging papers. The inner mechanism of the constructed 
models can be understood from these weights. A support 
vector machine is not suitable for this purpose because the 
method cannot provide such weights, although it is a well- 
known classifier method in machine learning. However, in 
logistic regression, regularization parameters are set as initial 
values, and these parameters affect the prediction 

performance. To explore appropriate parameters and avoid 
overfitting, we divided learning data into 5 sets in each model, 
with 4 used for learning the weights and 1 for validation 
(5-fold cross-validation) in our framework. 
 
D. Evaluation of the prediction model 

As shown in Table 2, the model was created using 
networks constructed each year from 2000 to 2007, and the 
results were verified based on the actual citation numbers three 
years after the networks are fully established, from 2004 to 
2011. An F-value was used to evaluate the model. The F-value 
is an index obtained using the harmonic mean of the 
conformance rate and the recall rate. The conformance rate is 
defined as the number of papers that are actually emerging, 
compared to the number of papers predicted to be emerging. 
The recall rate describes the rate of papers predicted to be 
emerging out of those that are actually emerging. The F-value 
is normally used as an index for evaluation of a prediction 
model.  
 

III. RESULTS 
 
A. Dataset retrieval and feature creation 

Papers published between January 1, 1901 and November 
31, 2015 with “nano*” and “carbon*” in the title or keywords 
were extracted from the Web of Science database. A total of 
411,084 papers were extracted that fit these criteria. Figure 2 
shows a plot of the number of qualifying publications in each 
year since 1901. This figure shows that the number of 
publications suddenly rose in 1991, with an inflection. Over 
45,000 papers were published in 2014. 

 
Figure 2. Number of publications in each year 

(x-axis: Year of publication, y-axis: Number of publications in each year) 
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TABLE 3. TOP FIVE CONTRIBUTING FEATURES IN EACH MODEL 
2002 model for 2006 2003 model for 2007 2004 model for 2008 

CNT_PAGER 20.5  CNT_PAGER 22.3 CNT_PAGER 27.1 
CNT_AUTHO 9.4  CNT_AUTHO 10.3 CNT_AUTHO 11.2 
CITING_MAX-CNT_DEGRE 5.3  CNT_DEGRE 8.0 CNT_DEGRE 9.0 
CNT_DEGRE 5.3  CITING_MAX-CNT_DEGRE 5.4 CNT_CLOSE 5.5 
CITING_SUM-CL_RANK 4.2  CNT_CLOSE 4.3 CITING_AVG-CNT_CLOSE 4.5 

2005 model for 2009 2006 model for 2010 2007 model for 2011 
CNT_PAGER 23.3  CNT_PAGER 25.8 CNT_PAGER 33.1 
CNT_AUTHO 9.7  CNT_AUTHO 18.3 CNT_AUTHO 14.9 
CNT_DEGRE 6.1  CNT_DEGRE 8.2 CNT_CLOSE 9.3 
CITING_SUM-CL_RANK 3.6  CNT_CLOSE 5.7 CNT_DEGRE 8.9 
CITING_SUM-CL_QMAX 3.5  CITING_SUM-CL_RANK 4.6 CITING_AVG-CNT_CLOSE 5.2 

 
A network was constructed based on the direct citation 

coefficient between papers. There were 379,044 resulting 
papers that were incorporated into the maximum connected 
component, which is the element comprising the largest 
islands in the network groups. For papers residing in the 
maximum component, we calculated feature values at the time 
of publication. We also calculated the predicted citation 
number three years after publication for all papers. 
 
B. Model development 

A model was constructed for predicting a paper published 
between 2006 and 2011 that would be designated as a 
emerging paper after three years. As explained above, models 
were built using data from 2002 to 2007 to perform feature 
value learning. Table 3 shows the top five rankings from the 
feature value weighting. 

In Table 3, the feature with the highest contribution was 
PageRank (CNT_PAGER). PageRank is based on a weighting 
defined by citation relationships between papers. This index 
identifies a paper cited by papers that are themselves 
frequently cited. High PageRank suggests that an author who 
wrote a paper cited papers in the reference list that are 
frequently cited in other papers, and therefore the author must 
have surveyed the related area very well. In this sense, it is 
reasonable that such a paper is regarded as a paper that will 
have many future citations. Furthermore, this reduces the 
relative importance of papers that contain mutual citations. In 
all models, the feature value with the second highest 
contribution was Authority Score (CNT_AUTHO). This index 
rates papers based on their span across multiple clusters of 
research. Higher scores are given to papers that have a 

bridging role among cluster members. We included this 
property based on the assumption that new fields arise from 
papers that transcend fields, hinting at the formation of a 
emerging new area. 

Degree centrality (CNT_DEGRE) also had a high weight 
in several models. The more a paper is cited in reference lists, 
the higher the index. As for PageRank (CNT_PAGER), an 
author who wrote a paper citing many papers in the reference 
list must have surveyed the related area very well. In all 
models, network centrality features dominated the top 
rankings. Based on this observation, it may be possible to 
predict emerging papers based only on network centrality. 
Aside from the network centrality feature, the paper’s group 
feature value from its reference list was also valid.  
 
C. Model evaluation 

The citation network expands over time, and performance 
in each model varies with network growth. Therefore, we built 
several models over time to evaluate the stability of the 
prediction performance. We evaluated the results from target 
years 2006 to 2011, with citations (impact) measured in 2009 
to 2014 (prediction evaluation year (t1+3)). Based on the 
citation number, we are able to verify whether the predictions 
of emerging papers were correct. Table 4 shows the model 
performance for each year. We randomly extracted the same 
data volume for negative examples as that for positive 
examples several times to create multiple balanced datasets for 
each year, and calculated the performance average. Since the 
F-value exceeds 80 in later years, we consider the most recent 
models to be most reliable. 

 
TABLE 4. AVERAGE VALUE OF RESULTS IN EACH BALANCE SET IN EACH YEAR 

Model training 
year 

t0 

Prediction 
target year 

t1 

Prediction model 
evaluation year 

t1+3 

Prediction 
target 

paper number 

Emerging 
paper 

number 
Precision Recall F-value 

2002 2006 2009 2,990 1,495 91.48 53.77 67.51 

2003 2007 2010 3,598 1,799 95.80 48.14 63.77 

2004 2008 2011 3,990 1,995 89.56 63.66 74.26 

2005 2009 2012 4,664 2,332 92.68 40.43 55.54 

2006 2010 2013 4,994 2,497 83.39 89.13 86.15 

2007 2011 2014 5,830 2,915  83.54 87.16 85.30 
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TABLE 5. TOP 10 PAPERS PUBLISHED IN 2011 PREDICTED TO BE EMERGING PAPERS. 

 Authors Title Journal 
Times Cited 

(2011) 

Times 
Cited 
(2014) 

Ref. 

1 
Zhang, Q; Huang, JQ; 
Zhao, MQ; Qian, WZ; 
Wei, F 

Carbon Nanotube Mass Production: 
Principles and Processes 

Chemsuschem 0 84 [33] 

2 
Lan, YC; Wang, Y; Ren, 
ZF 

Physics and applications of aligned 
carbon nanotubes 

Advances in Physics 0 35 [34] 

3 
Lee, SH; Lee, DH; Lee, 
WJ; Kim, SO 

Tailored Assembly of Carbon 
Nanotubes and Graphene 

Advanced Functional 
Materials 

6 82 [35] 

4 
Das Sarma, S; Adam, S; 
Hwang, EH; Rossi, E 

Electronic transport in 
two-dimensional graphene 

Reviews of Modern 
Physics 

51 664 [36] 

5 

Huang, X; Yin, ZY; Wu, 
SX; Qi, XY; He, QY; 
Zhang, QC; Yan, QY; 
Boey, F; Zhang, H 

Graphene-Based Materials: Synthesis, 
Characterization, Properties, and 
Applications 

Small 26 587 [37] 

6 
Saito, R; Hofmann, M; 
Dresselhaus, G; Jorio, A; 
Dresselhaus, MS 

Raman spectroscopy of graphene and 
carbon nanotubes 

Advances in Physics 0 98 [38] 

7 
Li, YD; Li, DX; Wang, 
GW 

Methane decomposition to COx-free 
hydrogen and nano-carbon material on 
group 8-10 base metal catalysts: A 
review 

Catalysis Today 5 46 [39] 

8 
Yan, LA; Zhao, F; Li, SJ; 
Hu, ZB; Zhao, YL 

Low-toxic and safe nanomaterials by 
surface-chemical design, carbon 
nanotubes, fullerenes, 
metallofullerenes, and graphenes 

Nanoscale 5 67 [40] 

9 
Singh, V; Joung, D; Zhai, 
L; Das, S; Khondaker, SI; 
Seal, S 

Graphene based materials: Past, 
present and future 

Progress in Materials 
Science 

7 506 [41] 

10 Leary, R; Westwood, A 
Carbonaceous nanomaterials for 
enhancement of TiO2 photocatalysis 

Carbon 11 223 [42] 

 
The top 10 ranked papers predicted to be emerging papers 

among papers published in 2011 are shown in Table 5. Most of 
these papers had high citation numbers three years later, as of 
2014. The papers that actually attained the conditions by 
which we defined a emerging paper are underlined in the times 
cited (2014) column. Of the 10 predicted papers, 9 were 
emerging papers as of 2014. The paper listed at #2 did not 
attain the conditions for a emerging paper, but it did have a 
high citation number. Regardless, 90% of the predicted papers 
in Table 5 did become emerging papers. 
 

IV. DISCUSSION 
 
The data in Figure 2 show an explosive increase in 

knowledge in recent years in the nanocarbon materials field. In 
particular, there was a sudden increase in the number of papers 
in 1991. The discovery of tubular nanocarbon (carbon 
filaments) was made by Radushkevich and Lukyanovich in 
1952 [43], but the discovery of carbon nanotubes by Iijima in 
1991 was the spark for expansion in this field [2]. 

In this study, we constructed a model that predicts whether 
papers will become emerging papers three years after 
publication. As shown in Table 4, the F-value for the model in 
2011 (stemming from the 2007 model) was over 80; therefore, 
it appears a balanced model was constructed for the 
conformance rate and recall rate. For models from 2006 to 
2011, the greatest contributing feature was PageRank. This 
indicates that citing a paper that has a high citation number 

increases the probability of a high citation number for the 
paper. In addition, degree centrality indicates that a paper that 
references many papers will eventually also have a high 
citation number. Of the top 10 papers (Table 5) published in 
2011 that were predicted to become emerging papers, 9 
actually became emerging papers. This indicates that our 
constructed model is valid. We summarize these papers below. 
All of these papers are reviews. 

Paper #1 focuses on carbon nanotube (CNT) mass 
production [33]. The paper discusses the arc discharge and 
laser vaporization methods, which were previously used in 
CNT manufacturing. The arc discharge method can be used to 
manufacture quality CNTs with few defects, but does not 
allow manufacture at a reasonable industrial volume. The laser 
vaporization method also produces CNTs of relatively high 
purity, but is not considered to be suitable for industrial-level 
manufacturing. After giving background on these methods, the 
paper focused on the chemical vapor deposition (CVD) 
method, which is reported to be suitable for mass-volume 
synthesis. Based on ideas such as "carbon multiwall 
nanotubes” at the Hyperion Company by Professor Endo of 
Shinshu University and the "CoMoCAT Process at SWeNT” 
at the University of Oklahoma, several manufacturing 
technologies have been pioneered and are being used. This 
paper provided a general introduction and discussion of 
research related to methods for CNT mass production. This 
paper had 84 citations in a three-year period. 

Paper #2 discusses the current status, physical 
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characteristics, and applications of aligned CNTs [34]. Among 
methods for CNT manufacturing, CVD is important due to its 
high orientation ability. These aligned CNTs have potential 
applications in a wide range of areas, including in field 
emission, optical antennae, subwavelength light transmission 
in CNT-based nanocoax structures, and nanocoax arrays for 
novel solar cell structures. This paper did not satisfy our 
criteria for a emerging paper, but it did receive a high number 
of citations. 

Paper #3 focuses on tailored assembly of CNTs and 
graphene into three-dimensional architectures [35]. The paper 
describes how to achieve scalability for practical mass 
production of these materials.  

Paper #4 reviews the properties of graphene obtained from 
the one-atom thick surface of graphite crystals [36]. In 2004, 
Geim et al. reported use of adhesive tape to separate the 
surface of highly oriented pyrolytic graphite (HOPG) and then 
extract a flake of graphene. Subsequently, the electrical, 
electronic, mechanical, and scientific properties of this 
material have been defined [44]. Graphene has high electron 
mobility, a measure of the speed of electrons within a solid. A 
mobility of 2,000,000 cm2/Vs was predicted theoretically [45] 
and later experimentally verified [46]. This value is more than 
100 times greater than the mobility of electrons in silicon, 
which is 1000 cm2/Vs at its highest. High electron mobility is 
important in creation of high-speed transistors and other 
related technologies. This paper describes the electrical 
characteristics and potential applications of the high electron 
mobility of graphene. As of 2014, it had attained 664 citations. 

Paper #5 considers additional properties of graphene [37]. 
In addition to high electron mobility, this material also offers 
thermal stability and excellent mechanical strength. The paper 
describes the importance of these physical characteristics and 
the possible applications of grapheme, including in FETs, 
memory, photovoltaic devices, and sensing platforms. The 
paper has received 587 citations, which makes it one of the 
most cited of the 10 top papers. 

Paper #6 focuses on structural analysis of carbon nanotubes 
and graphene, and summarizes related research [38]. Raman 
spectroscopy of carbon materials gives peaks that indicate 
structural properties. G-band peaks derived from graphite 
structure and D-band peaks due to defects reveal information 
on graphene and nanotube quality. These peak comparisons 
are useful in the evaluation of crystalline purity or defect 
concentrations in nanocarbon materials. 

Paper #7 describes a method through which steam breaks 
down methane using a catalyst in a high-temperature 
environment and generates hydrogen and carbon [39]. The 
generated hydrogen can be used as fuel for fuel cells. This 
method has attracted attention as a potential approach for 
hydrogen generation. In addition, since the generated carbon 
can be used directly in a carbon fuel cell, the method may 
allow generation of nanocarbon materials. This review paper 
summarizes the leading literature on formation of nanocarbon 
materials generated from the principles of methane catalytic 
decomposition. 

Paper #8 shows that carbon nanotubes have a structure 
similar to asbestos and are similarly toxic to humans, 
indicating that reduction of the toxicity is important for 
utilization of nanocarbon materials [40]. This paper provides 
systematic nanotoxicology knowledge and discusses 
approaches that can be used to achieve low toxicity through 
chemical modifications in design and changes of the biological 
and toxicological properties of carbon nanomaterials. 

Paper #9 summarizes the history of graphene, its 
characteristics, how it is formed, and the impact and 
application of graphene in electronic and optoelectronic 
devices, chemical sensors, nanocomposites, and energy 
storage [41]. As of 2014, this paper had 506 citations. 

Paper #10 discusses titanium oxide (TiO2), which is used as 
a photocatalyst, but has low efficiency and a narrow response 
range [41]. Combining nanocarbon materials with TiO2 
enables significant changes in these characteristics. This 
review considers nanocarbon-TiO2 as a photocatalyst, with 
guidelines for generation, characteristics, and future 
directions. As of 2014, the paper had 232 citations. 

This summary covers the top ten papers that were predicted 
to be emerging papers among all the papers published in 2011. 
All 10 papers had a high number of citations as of 2014. With 
the exception of paper #2, all papers satisfied the criteria for 
our definition of emerging papers. Therefore, we conclude that 
it is possible for a prediction model to evaluate the future 
importance of specific research. These ten papers all 
considered carbon nanotube applications and all were reviews. 
Degree centrality had a relatively high weight in our model, 
and thus it follows that many highly ranked papers reviewed a 
breadth of topics. In general, reviews give a survey of a 
specific area, with the goal of introducing and describing the 
topic. Therefore, the reference list of a review paper is often 
quite lengthy. As a result, our model showed a strong tendency 
to extract review papers, and future models may require 
reformulation to avoid this result. Nevertheless, not all papers 
with long reference lists became emerging papers, and 
extraction of potential emerging reviews can give perspective 
on future trends in the field. 
 

V. CONCLUSION 
 
The increase in science and technology knowledge and 

trends towards complexity and detail make it very difficult for 
any one person to have a full understanding of every 
development in any given field. To address this problem, we 
constructed a model for prediction of papers that are likely to 
be emerging papers in the future. The goals of the work were 
to identify emerging papers at an early stage based on 
information immediately after publication. The defining 
characteristics were the use of diverse features, network 
indexes, and clustering results, with the most novel aspect of 
the prediction model being the use of features at the time of 
publication to predict the citation number several years in the 
future. The constructed features used in the model were 
divided broadly into four classes: network features, cluster 
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features, centrality features, and citation-related features. 
Linear logistic regression was used in the prediction model 
algorithm. 

We extracted all papers (411,084) from the Web of Science 
that incorporated "nano*" and "carbon*” in keywords or titles 
and were published after January 1, 1901. After constructing a 
model for each year, we predicted emerging papers. Features 
related to network centrality were particularly in this 
prediction. This may be because researchers who write papers 
that cite other suitable papers are likely to have fully surveyed 
the target field and are able to construct a reference list that is 
neither excessive nor deficient. The paper can easily be cited 
by other researchers after publication, and thus attracts a large 
number of citations.  

Some of our models had an F-value of 80 or more, whereas 
the F-value for a random prediction is generally less than 50. 
Dong achieved about F=70 in some models, compared with 
F=38 in a random model. Most previous models do not exceed 
F=80, and we were able to reach this level of performance 
without use of citation data for several years after publications. 
A summary of the top 10 predicted papers was performed to 
understand the importance of these papers. The predicted 
emerging papers were all reviews, which may be a limitation 
of our method. However, not all review papers collect many 
citations, even those with a long reference list, and many 
reviews do not have a lot of citations. Therefore, detection of 
review papers that are likely to be emerging papers is 
meaningful and the fields mentioned in such papers can be 
viewed as emerging fields. However, we are also trying to 
address this limitation. We are also considering broader 
applications in other fields. Since the citation network is 
extracted in each target field, prediction models can learn data 
based on a characteristic citation pattern (knowledge 
expansion pattern). For a dataset from another field, the model 
learns based on the characteristics of the pattern of the field. 
We plan to develop a higher performance and more stable 
model that can contribute to policy-making and identification 
of future trends in multiple sectors. 

As the amount of information continues to expand and 
knowledge becomes more complex, it will only become more 
difficult for corporations and national governments to make 
decisions on where to focus research and development 
investments and make budget allocations. Foresight in science 
or technology trends is challenging and requires a proactive 
approach. Our prediction model can provide support for 
government officials and investors engaged in 
decision-making. We believe that the need for tools that 
support extraction of useful information from vast pools of 
papers will increase in the future. 
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