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Abstract--Enterprise architecture (EA) has become an 

essential part of managing technology in large enterprises. These 
days, automated analysis of EA is gaining increased attention. 
That is, using models of business and technology combined in 
order to analyze aspects such as cyber security, complexity, cost, 
performance, and availability. However, gathering all 
information needed and creating models for such analysis is a 
demanding and costly task. To lower the efforts needed a 
number of approaches have been proposed, the most common 
are automatic data collection and reference models. However 
these approaches are all still very immature and not efficient 
enough for the discipline, especially when it comes to using the 
models for analysis and not only for documentation and 
communication purposes. In this paper we propose a format for 
representing reference models focusing on analysis. The format 
is tested with a case in a large European project focusing on 
security in advanced metering infrastructure. Thus we have, 
based on the format, created a reference model for smart 
metering architecture and cyber security analysis. On a 
theoretical level we discuss the potential impact such a reference 
model can have. 

 
I. INTRODUCTION 

 
Modeling and analysis of enterprise and system 

architectures provide capabilities that aid effective 
management of technology [22], [29]. Examples include the 
capability to hold an architectural overview of an enterprise 
and its IT environment (with support of as-is models) [31], to 
evaluate the viability of prospective improved scenarios 
(using to-be models), and to analyze different attributes 
within the architectures represented by models (e.g., 
interoperability [48], modifiability [28], flexibility [33], 
availability [14] and cyber security [19], [46]). However, 
both modeling and analysis of architectures have mostly been 
done using human effort. Today, approaches advancing the 
modeling and the analysis from mostly manual to largely 
automated [18], [49] respectively [24], [25], [31], [35] are 
receiving more attention. A vision of such approaches is to 
foster the development of EA tools that would essentially 
correspond to tools for computer aided design (CAD) used in 
other domains of engineering. The aim is to enable automated 
analysis and simulation of EA scenarios in a similar fashion 
as a whole spectrum of physics aspects can be analyzed and 
simulated in today’s CAD tools. Thus, the effort is spent 
before the modeled system is actually built and making it less 
costly to make changes. 

However, gathering facts about architectures and creating 
the appropriate models remains a lengthy and demanding 
process. Let us consider three model cases. 

1) As-is modeling of large IT environments. The process of 
gathering data about and modeling IT environments 
hosting large enterprise systems (e.g., SAP) or large 
industrial control systems (e.g., ABB Network Manager) 
together with a myriad smaller systems they interface, 
might easily take months of intensive work. Hence, the 
data collection and modeling process in itself is an 
expensive and demanding part of architectural work, 
which calls for support. 

2) Automated EA analysis of to-be scenarios. An analytical 
metamodel (e.g., [19]) might require or notably benefit 
from having models with high amount of detail as input. 
At the same time however, analysts and organizations 
creating such to-be models might be hindered by the large 
amount of uncertainty present in the process. For instance, 
consider an industrial plant evaluating a migration to a 
new control system. Obtaining exact and detailed data 
would be difficult, since the organization does not yet 
possess an implementation of such system, nor has its 
detailed documentation available. Consequently, the 
analyst is forced to make numerous assumptions, which 
can require tedious intelligence gathering, consulting, or 
plain guessing. 

3) New technological trends. Innovation that continuously 
takes place around the globe yields new types of solutions 
that offer improvement potential for organizations, but at 
different expenses and risks. Hence, there is a need to 
evaluate these before making an investment decision. 
Examples may include cloud computing [32], the 3rd 
platform [20], IoT [4], or software-defined networking 
[42]. While some might still be defined very loosely, 
others can be modeled with more exactitude and detail. 
Moreover, models of these architectures can be reused 
over time and even between specific implementations. 

 
To sum up, modeling for EA analysis often requires a lot 

of details. In addition to the fact that EA data collection is an 
expensive process as such. The cost of collecting data can be 
reduced through prioritizing what data to collect [37], 
automatic data collection [18], [49], and reuse of models 
including using so called reference models (as proposed in 
this paper). 

While a number of contributions have been done in the 
field of reference architectures, an extension of the concept 
for purposes of automated EA analysis has not been 
proposed. In this article, we present a format for reference 
models designed for enabling reuse in modeling for 
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automated EA analysis. 
The reference model format is suited for object models 

following the syntax of UML [38] class models. The format 
allows the use of a programming language such as OCL [39], 
and allows representing uncertainty through the extensions of 
P2AMF [24], [25]. We also argue that the use of reference 
models in the proposed format can decrease the modeling 
effort needed to model large IT architectures. We discuss this 
using a case study as a proof of concept. The case study is 
based on a large European project on security in advanced 
metering infrastructure. We have, based on the proposed 
format, created a reference architecture for smart metering 
systems and cyber security analysis of such. 

This article unfolds as follows. Chapter II introduces the 
concept of reference architecture as used in literature and 
presents related work. Chapter III introduces the issue of 
reuse, and lists a few attributes relevant for reusing EA 
models. Chapter IV introduces the concept of EA analysis, 
and a few EA analysis frameworks. Chapter V describes the 
design of this study. Chapter VI describes the context of 
using reference models as employed in this study and chapter 
VII presents our proposed format of reference models for EA 
analysis. Subsequently, chapter VIII evaluates the reference 
model format using a real case on advanced metering 
systems. Chapter IX provides a discussion, directions for 
future work, and finally chapter X concludes the study. 
 
II. THE CONCEPT OF REFERENCE ARCHITECTURES 

AND RELATED WORK 
 

The purpose of this section is twofold. First, it introduces 
the concept of reference architectures – something that a 
reference model describes. Second, it briefly mentions 
contributions that relate to this study and reference 
architectures in a broader sense. 

Reference architectures have been proposed for a number 
of domains [1], [20], [32] and even a framework for 
classifying reference architectures has been proposed [1]. 

Bernus & Noran [6] differentiate between two types of 
architectural models commonly proposed by EA scholars. 
The first, type 1 architectures, also called reference models or 
partial models, have the essence of generally applicable 
blueprints. The second, type 2 architectures, also called 
enterprise reference architectures, have the essence of life 
cycle architectures. In GERAM [5] (generalized enterprise 
reference architecture and methodology), the two types of 
architectures correspond to the concepts of PEM (partial 
enterprise model) and GERA (generalized enterprise 
reference architecture), respectively. In literature however, 
the term reference architecture often refers to a type 1 
architecture (reference model). 

Cloutier et al. [10] provide a comprehensive and 
systematic overview of the concept of reference architecture. 
In spite of varying specific understanding of the concept 

across scientific literature and practice, reference architecture 
is here seen as an artifact with the purpose to provide 
guidance for further developments (e.g., through facilitating 
multi-site, multi-vendor, multi- [...] system creation and life-
cycle support, effective creation of new products, and 
achieving interoperability between many different and 
evolving systems). Further according to that view, a reference 
architecture usually captures the accumulated architectural 
knowledge of thousands of man-years of work, ranging from 
why (e.g., value chain, application, etc.), what (e.g., systems, 
functions, etc.), to how (e.g., design views and diagrams, 
design patterns, etc.). According to [10], objectives of 
reference architectures include managing synergy, providing 
guidance in form of architecture principles and best practices, 
an architecture baseline and an architecture blueprint, 
capturing and sharing architectural patterns, providing a 
common lexicon and taxonomy, a common architectural 
vision, modularization and the complementary context, 
articulation of domain and realization concepts, explicit 
modeling of functions and qualities above systems level, and 
explicit decisions about compatibility, upgrade and 
interchangeability. 

Several studies attempt to provide general models of 
reference architectures or guidance in design of reference 
architectures. Examples include Nakagawa et al. [36] for EA 
reference architectures, Galster & Avgeriou [15] for software 
architectures, and Irlbeck et al. [21] for smart energy systems. 

There are also proposals of formats for EA reference 
models [9], [21]. However, none of the identified works 
propose a reference model format explicitly and generically 
suited for automated EA analysis [14], [24], [25], [48]. The 
closest match in terms of included detail and thus support to 
automated analysis is the use of reference models in software 
engineering [34]. 

Since creating models suitable for automated EA analysis 
poses increased demands for detailed data (e.g., costs, failure 
rates, probabilities of events, configuration details and other 
properties) and so becomes more costly, increasing the 
modeling efficiency helps keeping the whole EA analysis 
process more viable. 

Using reference models, which contain both reusable 
structure and generic assumptions regarding detailed data, 
brings reuse into modeling in a way that can satisfy the needs 
of metamodels for automated EA analysis. 
 
III. REUSE AS THE PURPOSE OF REFERENCE MODELS 
 

The nature and the use of reference models indicate its 
main purpose – to promote reuse of architectural knowledge 
– be it in a context of industrial development, analysis, 
research, education, or some other. 

The issue of reuse has been around for about two decades, 
mostly in the domain of software engineering. Frakes & Kang 
[13] provide a brief overview of software reuse research, 
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among other mentioning domain engineering (also known as 
product line engineering) and a number of methods and 
techniques therein, which attempt to promote software 
productivity through reuse. Somewhat closer to the scope of 
reference models, Robinson et al. [44] provide their views on 
the issue of reuse of simulation models (i.e., artifacts ranging 
from simple mathematical models to software systems for 
military simulations). Although these works relate to the 
subject of this study, their approaches to supporting the reuse 
of architectural knowledge are often very different from those 
applicable to reference models of enterprise architectures. 

Further toward the issue of model reuse, Robinson et al. 
[44] identifies two major influencing factors: (1) the validity 
and credibility of the model; and (2) the costs and benefits of 
reuse, which undoubtedly also apply to EA models. The work 
also mentions a major obstacle to reuse – the composability 
problem [of the reused model with its environment]. The 
composability problem also applies to EA models, since EA 
models typically follow some predefined syntax (e.g., [41]), 
and reusing a model with entirely different syntax might 
imply the need of a major rework. In EA analysis, the need to 
additionally capture a multitude of properties of modeled 
entities according to an analytical metamodel even rises the 
challenge. Yet another piece of EA-applicable remark in the 
work relates to the pitfalls of reusing models – the 
abstraction challenge, saying that the simplest model fitting 
the purpose is typically the best. When reusing a model, the 
level of abstraction might not be readily compatible with the 
rest of the model environment, which it shall enrich, which 
leads to the risk that an overly detailed model would still be 
employed in an analytic task for the sake of reuse. 

Finally, Pidd [43] lists four properties that a reuse strategy 
should support (related to models for simulation): (1) 
abstraction as the ability to provide succinct, high-level 
descriptions of reuse artifacts to ease the understanding of 
their purpose, nature and behavior; (2) selection to aid 
performing reuse through mechanisms that allow the location, 
comparison and selection of reuse artifacts; (3) specialization 
(modification) of the reuse artifacts into usable, concrete 
entities; and (4) integration to ease the combination, 
connection and communication between reuse artifacts. All of 
the above likely apply to reference models in EA as much as 
to models for simulation or pieces of software reuse artifacts. 
 

IV. BACKGROUND 
 

Enterprise architecture (EA) is defined as “a coherent 
whole of principles, methods, and models that are used in the 
design and realization of an enterprise’s organizational 
structure, business processes, information systems, and 
infrastructure;” it attempts to capture the essentials of the 
business, IT and its evolution [31]. In this light, EA can be 
adopted and used for a multitude of purposes including 
documentation, communication support, design, analysis, 

transformation, decision-making et cetera [29]. In this paper 
we use the term enterprise architecture, but ofte we also mean 
system architecture or especially system-of-systems 
architecture (like in our AMI case in chapter VIII). The 
common denominator is that the models of these architectures 
are often holistic, large, complex, contain many different 
types of objects, and usually requires more than human effort 
to be really useful in analysis and simulation. 

Metamodeling [2], [27] can be briefly described as “the 
modeling of models” [47]. A meta- model describes the 
syntax of its instance models and their permitted structure 
(i.e., classes with their properties, associations with their 
cardinality constraints). A corresponding instance model can 
then describe instances of the classes (i.e., objects with their 
property values), and instances of the associations (i.e., 
connections). 

Similarly as a metamodel relates to instance models, does 
a meta-metamodel relate to meta-models. An example of 
such meta-metamodel is the Meta Object Facility (MOF) 
[40]. Recent contributions have refined this line of 
abstraction even further through the concepts of clabject and 
power type, into level-agnostic modeling [3], [16], providing 
additional freedom of abstraction as compared to MOF. 
Although metamodeling is commonly seen as a means of 
specifying and constraining models on a lower level of 
abstraction, metamodels can also possess active analytic 
capabilities (e.g., by embedding executable code for the 
purposes of inference). 

In recent years, EA analysis has been receiving more 
attention [24], [25], [30], fueled by decision makers’ needs to 
compare different alternative scenarios and make trade-offs 
between their different aspects (e.g., service availability [14], 
interoperability [48], cyber security [19], [46], or costs 
[11],[23],[26]) to predict the effects of prospective decisions. 
Rather than as a purely human intellectual activity, this study 
views the concept of EA analysis as a process largely 
automated through computational processing that evaluates 
arbitrary aspects of EA models. Lankhorst [31] identified two 
dimensions for classifying techniques of EA analysis: (1) 
functional vs. quantitative; and (2) analytical vs. simulation. 
While functional analyses can be used to gain insight into the 
behavior of an architecture, identify impacts of changes to it, 
or validate its correctness; quantitative analyses can provide 
quantitative answers such as “how much downtime” etc. 
While analytical techniques typically calculate a unique, 
reproducible result; simulation techniques “run” the model 
and can employ stochastic techniques. 
 
A. Framework for enterprise architecture analysis 

The Predictive, Probabilistic Architecture Modeling 
Framework (P2AMF) [24], [25], is a framework enabling 
automated analysis of architectures, based on metamodels. 
Although primarily intended for quantitative simulations, it 
can also employ analytical techniques, mostly quantitative. 
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P2AMF extends the combination of Unified Modeling 
Language (UML) [38] and Object Constraint Language 
(OCL) [39] in three major ways. First, it allows one use 
stochastic value expressions by using probability distributions 
(e.g., “normal(25, 5)” for an input (∈ R) from normal 
distribution with µ = 25 and σ2 = 5, or “bernoulli(0.75)” for a 
boolean input with 75% chance of yielding true). Second, it 
enables specifying stochastic existence of objects (i.e., 
structural uncertainty). Third, it uses Monte Carlo approach 
for simulation: the model is first sampled into a number of 
deterministic UML/OCL diagrams, which are subsequently 
evaluated according to the OCL logic, UML structure, and 
objects’ property values. 
 
B. Analytical metamodels 

There are numerous metamodels available for architecture 
analysis, in this subsection we mention a few. The reason we 
for instance choose to briefly present CySeMoL below is that 
it is a predecessor of a commercially available modeling tool 
for architecture modeling and cyber security analysis called 
securiCAD1 [12]. 

The Cyber Security Modeling Language (CySeMoL) [19], 
[46] is a metamodel for the analysis of cyber security in IT 
architectures, implemented in the P2AMF framework [24], 
[25]. CySeMoL strives for a holistic approach to evaluating 
security and is even built for coping with uncertainty. It 
defines over twenty assets and over hundred different attack 
steps and defense mechanisms. 

CySeMoL uses Bayesian networks and attack graphs [45] 
to produce a map of reachability across an IT architecture 
model. The resulting map contains a set of probabilities, with 
which the attacker, given certain assumptions, can reach each 
attack step of each asset present in the model. 

Other similar metamodels include a framework for 
analysis of IT service availability [14], a metamodel for 
interoperability analysis [48], and an educational-grade 
metamodel for multi- attribute prediction [11],[23],[26]. 

As a commonality among the above-mentioned 
metamodels, each entity (e.g., an operating system or an IT 
service) commonly has a set of properties, the values of 
which would usually occur within certain ranges and follow 
certain probabilistic distributions for a specific piece of 
reality modeled (for some examples, Fig.s 6 & 7). Hence, 
there is a potential for generalizing and subsequently reusing 
parts of the models. The reuse can apply within a single 
model, across multiple models, and even across organizations 
and modeling efforts taking place at different times. 
 

V. STUDY DESIGN 
 

The study builds on the foundations of design science 

                                                            
1 For more information about securiCAD visit: www.foreseeti.com 

 

[17], proposes a reference model format suited for reuse in 
modeling for EA analysis, and evaluates its contributory 
potential on a real case. Below, this section provides a brief 
summary of the study. 

Research in automated EA analysis has gained attention, 
and a number of analytical metamodels have already been 
developed. At the same time, reference models do not 
typically contain information needed by analytical 
metamodels, and neither has a format for machine-friendly 
representation of such information in reference models been 
proposed. Hence, the need for the format presently exists, and 
is seen as the primary problem within this study. 
Additionally, as researchers and practitioners face greater 
needs for improving the efficiency of and reuse in modeling 
for automated EA analysis, custom formats of reference 
models might start being proposed, likely incompatible with 
one another. Considering the difficulties such a 
diversification might pose for the interoperability of solutions 
for EA modeling and analysis in the long run, the need to 
take an early step toward unification is a secondary problem 
within the study. 

To achieve a highly interoperable and hence easily 
adoptable artifact, the research process was constrained by 
adherence to the bases of UML [38], and used the 
technological bases of OCL [39] and P2AMF [24], [25]. The 
research process led further through existing analytical 
metamodels [11], [14], [19], [23], [26], [46], [48], 
specifically in the reliance on sets of attributes found to 
notably impact the level of an attribute under consideration 
(e.g., cyber security or service availability). 

The study aimed at formulating a format that is 
interoperable, expressive, and easy to use, to allow reducing 
modeling effort, provided that a generic reference model can 
be reused in the modeling process. Requirements for the 
format were on the one hand the full backward compatibility 
with UML and OCL, and on the other hand the possibility to 
represent uncertainty to more generically enable reuse in 
modeling for EA analysis. 

The artifact resulting from this study can be seen as an 
enrichment or an extension of the concept of partial 
enterprise models (PEMs) as presented in GERAM [5], by 
the ability to stochastically express uncertainty of data values 
and object-relational structure, and hence improved support 
for model reuse. 

The evaluation of the format takes into account a model of 
a complex IT environment, which is quantitatively analyzed 
according to the difference in modeling effort needed, both in 
an ideal and an assumed realistic scenario of application. The 
modeling effort is measured by counts of objects and 
connections to instantiate, and counts of property values to 
set or adjust. 

The contribution of this study is a piece of design 
construction knowledge (i.e., foundations [17]) regarding a 
format for representing reference models that may contain 
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uncertainty, enabling greater reuse in models for automated 
EA analysis. 

Although this article is mostly intended for a technical 
audience familiar with EA (e.g., EA solution architects, 
analysts and scholars) and modeling technologies (especially 
UML and OCL), the article also contains useful information 
for managers involved in EA decision-making. 
 

VI. THE USE OF REFERENCE MODELS IN EA 
ANALYSIS 

 
This chapter tries to describe the use of reference models 

in EA in terms of a workflow, and so provide frames for 
better understanding of the concept of reference model as 
treated in this study. 

First of all, we would like to note that a model is an 
excessively broad category of artifacts, which can be divided 
into concrete models (e.g., mechanical or software models), 
as well as abstract ones (e.g., mathematical models, mental 
models, or architectural models). Further in that direction, an 
UML-like object-relational model is merely a subset of 
architectural models, which delimits this study, and the 
concept of reference model as treated herein. 

Considering a simple modeling work flow (illustrated in 
Fig. 1), in which a person uses a computer to create, maintain 
and draw benefits of EA models, as well as through our own 
modeling experience, we identified a set of requirements for 
the functionality that could aid EA modelers and other users 
in performing their tasks related to EA models, besides just 
the information present in them as in static documents. 

The requirements are as follows: 
• The availability of a reference model shall offer the 

potential for the modeler to either reuse modeling content 
and so save modeling effort, or reuse otherwise 
unavailable knowledge, as compared to a situation 
without the reference model; 

• A reference model must be able to express a snapshot of a 
piece of concrete architecture; 

• A reference model shall be able to express uncertainty in 
case several architectural alternatives are common for the 
architecture under consideration (e.g., several values or a 
range instead of just a single value; or several structural 
alternatives instead of just one structural alternative); 

• A reference model shall be able to express validation 
constraints, so as to enable a software tool issue warnings 
to the modeler upon omitting important aspects of what 
needs to be modeled for correct representation, or 
breaching constraints that need to be complied to with 
regards to a given domain and the modeled architecture; 

• A reference model shall be able to express logic for 
suggesting default alternatives, best choices, or best 
guesses when applicable; 

• A reference model shall be possible to further specify and 
arbitrarily modify according to the modeling needs. 

 
Clearly, the format of reference models itself cannot 

provide all the above-mentioned functionality, a modeling 
tool as a piece of software can (which is beyond the scope of 
this study). 

However, the reference models complying with the format 
must be able to contain the above-mentioned information for 
the functionality to be provided by the tool, in connection 
with each specific reference model. 

 

 
 

Fig. 1. Illustration of a modeling workflow: the upper row denotes the handling of a larger EA model, while the lower row denotes 
handling of a reference model, which is potentially used in the former. 
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VII. FORMAT OF REFERENCE MODELS FOR EA 
ANALYSIS 

 
The reference model format reflects the MOF [40] meta-

metamodel, besides some slight differences. This study 
focuses on the concepts; metamodel, instance model, and 
template, the last of which is intended to contain a reference 
model, according to the following definitions (using set 
notation) and as seen in Fig. 2: 
 
Metamodels M ⊂ (C, A, I) 

Classes C ⊂ (name, T) : name ∈ String  
Attributes T ⊂ (name, type, defaultDerivation) : 

name ∈ String,  
type ∈ DataType, 
defaultDerivation ∈ String  

Associations A ⊂ (cls1, cls2, name, cardmin, cardmax) : 
cls1 ∈ C, cls2 ∈ C,  
name ∈ String, 
cardmin ∈ N, cardmax ∈ N 

Invariants I ⊂ (class, name, derivation) 
class ∈ C, 
name ∈ String,  
derivation ∈ String 

Instance models I ⊂ (m, O, R) : m ∈ M 
       Objects O ⊂ (class, P, name, existenceProbability) : 

class ∈ C,  
name ∈ String, 
existenceProbability ∈ R[0,1] 

Properties P ⊂ (object, attribute, derivation) : 
object ∈ O, 
attribute ∈ T,  
derivation ∈ String 

Connections R ⊂ (obj1, obj2, association, 
existenceProbability) : 

obj1 ∈ O, obj2 ∈ O,  
association ∈ A, 
existenceProbability ∈  R[0,1] 

Templates T ⊂ (m, O, R) : m ∈ M 
(Immediately after instantiation of t ∈ T in i ∈ I): 

m ∈ M, i ∈ I, t ∈ T, i ∈ N : ti ⊆ i ⇒ mti ⊆ mi 
 

This study treats the concepts as follows. A metamodel 
consists of a set of classes, associations and invariants. A 
class contains its name and a set of attributes (cf. property in 
MOF). An attribute consists of its name, its data type, and its 
default derivation (in a programming language such as OCL), 
which can in its simplest form express the default value of all 
corresponding properties (property here seen as an instance 
model level entity corresponding to an attribute on the 
metamodel level). An association is identified by a directed 
relation between two classes together with its name, and 
further contains its minimal and maximal cardinality. An 
invariant consists of a name, and a derivation, which returns a 
Boolean value, based on whether the constraint it expresses is 
satisfied, or not. An instance model consists of a metamodel, 
to which it corresponds, a set of objects and a set of 
connections between the objects. An object is identified by its 
class, its properties (corresponding to the class’ attributes), its 
name, and the probability of its existence. A connection is a 
directed relation between two objects, corresponding to an 
association (defined in the metamodel), and further having a 
probability of its existence. A template is in fact a special 
type of instance model; they are similar in essence. Both 
always correspond to a given metamodel. In order for a 
template to be instantiable in an instance model, the 
metamodels of the former has to be equal or at least be a 
subset of the latter. Provided this criterion, multiple templates 
can be instantiated in an instance model, and a single 
template can be instantiated multiple times. 

For the sake of interoperability, the reference model 
format is built on the foundations of UML [38]. Since the 
format needs to define computation between values of 
properties and on the level of associations, there is a need for 
a expressions of a programming language used within the 
models (e.g., OCL [39]). UML class diagrams define the 
structure of models, their class/object-relational syntax, and 
how data (e.g., parameters in form of properties) are defined 
and stored in the models. A programming language such as 
OCL enables in-model computation (e.g., derivation of 
property values for the purposes of inference) and elegant 
querying for data within the object-relational structure of a 
model. 

 
Fig. 2. UML depiction of the proposed reference model format.  
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The ability to represent uncertainty is a major feature of 
the proposed reference model format, which opens for greater 
reuse in modeling for EA analysis. Uncertainty tends to arise 
in the process of abstracting from very specific, real models, 
into generic models intended for broader reuse. For instance, 
a concrete installation of an operating system might be 
configured highly specialized while the configuration of a 
typical installation of that operating system is different, more 
generic, and some parameters fall within ranges rather than 
exact, point-like, quantities. Hence, in addition to exact 
quantities and structure, a reference model can express ranges 
with probability distributions of quantities, as well as 
multiple structural alternatives. The proposed format suggests 
the use of P2AMF [24], [25], which supports expressing 
stochastic uncertainty in models, and at the same time fully 
preserves the backward compatibility with both UML and 
OCL. 

 

 
 

Fig. 3. Relationships between a reference model, metamodel and instance 
model. 

 
From a persistence perspective, templates containing 

reference models are meant to reside independently of 
instance models, while their content is truly instantiated in an 
instance model first upon its use (inclusion), as depicted in 
Fig. 3. 

The use of a reference model consists in the event of 
instantiating its content in an instance model (see Fig. 4), 
much like by running a script there. Hence, a reference model 
can be used in an instance model multiple times, and each of 
the sets of elements instantiated by the use of the reference 
model can afterwards be arbitrarily modified in the instance 
model, without it affecting the original reference model nor 
other instantiations of it. This flexibility renders useful when 
applied to similar yet not equal parts of an instance model. 
 

 
 

Fig. 4. Reference model inside an instance model (illustration). 

 
An example application of reference models is illustrated 

in chapter VIII. 
 

VIII. CASE: CYBER SECURITY IN AMI SYSTEMS 
 

The demand for energy is increasing at the same time as 
we need to decrease our CO2 emissions. In 2007 the 
European Union agreed upon a set of goals in order to reduce 
CO2

 emissions and energy consumption, as well as raising 
the shares of green power and the energy efficiency. More 
precisely the goals for 2020 are: 20% cut in greenhouse gas 
emission (compared to 1990 levels), 20% of EU energy from 
renewables, and 20% improvement in energy efficiency. This 
is called the 20-20-20 targets. 

In order to reach the energy efficiency target the European 
Union has adopted a number of measures, incl. the planned 
rollout of close to 200 million smart meters for electricity and 
45 million for gas by 2020. The result of this rollout alone is 
calculated to reduce emissions by 9% and an annual 
household energy reduction by comparable amounts. When a 
smart device is going to be delivered to almost 80% of the 
households in Europe there is lot of things that needs to be 
considered in terms of privacy, integrity and security. These 
issues are addressed by the European Commission, in forms 
of recommendations and regulatory requirements. The case 
described in this paper as a proof-of-concept for our reference 
architecture format is a result of EU’s focus on energy, and 
especially advanced meter systems and their security. The 
case is a part of larger EU project where one of the goals was 
to produce an AMI reference architecture for cyber security 
analysis. 

Basically, there are no existing reference models for 
security analysis and AMI. However, there are some 
reference models for AMI systems and these have been used 
as a foundation for the reference model created in the project, 
see Fig. 5. 

The reference model was implemented using securiCAD 
[12], as mentioned in chapter IV-B. 

 
A. The AMI reference model 

Primarily, the creation of the AMI security reference 
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model was done by studying various available reference 
architectures for AMI incl. reports from different AMI-
system vendors and research on AMI, AMI-security, and, 
smart grids. One such source of inspiration can be seen in 
Fig. 5. The modeling was a four/five step iterative process; 1) 
logical level incl. systems and dataflows, 2) protocols and 
software products, 3) users, user accounts, and access control, 
4) network layer incl. routers, firewalls, IDS, and IPS, and 
finally adding the 5) attacker(s) for the simulation and 
scenarios. 

The AMI reference model is divided into three levels of 
abstraction: i) Network level with entities like; networks 
zones, routers, firewalls, zone management, IDS, and IPS. ii) 
Logical level with all the IT-systems, OT-systems, (incl. 
operating system, client, and server), data store, user, user 
account, and access control. iii) Data flows with associated 
protocols. 

In order to grasp the full model one would need to install 
securiCAD and browse the different views. In this paper we 
have chosen one view in order to exemplify what a reference 
model and its accompanying analysis could look like and 
how it could be used. In Fig. 6 we present the Meter 
Management System (MMS) view. The MMS manages meter 
data and meter operations to enable advanced metering 
infrastructure (AMI). A MMS usually has a great flexibility 

for operating system platforms, database selection, data 
acquisition approaches, look and feel, reporting, and alarm 
capabilities. This view also contains the AMI Forecasting 
System (AMI FS), which has the role to collect and process 
forecast data to the AMI. There is also a connection between 
MMS and the EAM being a lifecycle management system of 
physical assets of an organization. Included is also the 
Customer Information System (CIS) collecting customer 
notifications, billing and payment information/confirmations, 
and service order request from customers, as well as the 
Outage Management System (OMS) handling outage record 
requests, activity records, and planned outage info.  

Of course you can use this kind of reference model to 
design your AMI system focusing on the functions and 
structure, and this is also what most reference models are for. 
However, the true value of a reference model comes when 
you can use it for analysis and making sure that the 
architecture proposed is actually any good. Being able to 
model and analyze before implementing your system can help 
you save time since you can test your design decisions before 
you actually implement them. In the next subsection we will 
demonstrate how the AMI reference model can be used for 
cyber security analysis. 

 

 
 

 
 

Fig. 5. One of two reference models used as a basis for the one proposed in our case. 
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Fig. 6. An example view of the AMI reference model implemented in securiCAD. 

 
B. Security analysis of an AMI system 

In total we analyzed three different scenarios within the 
project; 1) attack from the public Internet, 2) attack from a 
customer, 3) structural changes to the architecture. 

The results of these scenarios are reported with models, 
graphs, attack paths, and tables. The graphs show the time it 
takes to compromise (TTC) each part of the model, the time it 
takes for an attacker (professional penetration tester) to 
succeed with an attack on a chosen entity. Basically the graph 
illustrates the probability to succeed in X days, where the 
graph explicitly highlights how many days it is likely to 
succeed within 5%, 50%, and 95%. 

In securiCAD, attack paths are presented in three different 
views; all paths, critical path, and fastest path. To limit the 
section somewhat, we have chosen to present the fastest path 
for some selected attributes. This is a good addition to the 

distribution graphs in order to understand the complexity of 
an attack. 

The tables are used as a supplement for easier comparison 
of results. The tables should be interpreted the same way as 
the distribution graphs, described above. 

The first scenario is an attack coming from the public 
Internet through an external server. The attacker’s target in 
this scenario is the MDMS (Meter Data Management System) 
where the attacker wants to find sensitive customer data and 
the MMS (Meter Management System) where she can control 
a customer’s meter in the sense it could be able to shut out 
customers from the grid and tinker with prepaid accounts. 

With the heat map (Fig. 7 we can se that the attacker 
manages to penetrate more or less the whole system (all 
objects in the model have attributes that are marked as red 
meaning it is possible for an attacker to succeed with that 
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particular attack within a certain threshold). 
Table I shows some of the TTC numbers, e.g. a man in the 

middle attack of the dataflow between the MMS and the 
MMS database succeeds in 5% of the attempts given 4 days, 
while given 37 days 95%. The same information can also be 
shown by the distribution graphs, as in Fig. 8. 

In the AMI case we have one large reference model 
describing the advanced metering infrastructure according to 
commonly well-known functional reference models available. 
Doing a cyber security analysis using different possible attack 
scenarios shows what weaknesses one would have if 
implementing the reference architecture as it is with out any 
modifications. Since this is a reference architecture most 
companies would do some changes to it before 
implementation, both functionally and non-functionally. 

Looking at scenario 1 in our analysis, we can clearly see that 
changes need to be made in regards of security. The next step 
would thus be to make appropriate changes to the architecture 
and run the analysis again to see if there are improvements 
and how much of an improvement it is. One could also test 
different changes to decide which one(s) is more 
economically efficient to implement. 

Running our three scenarios and exploring these helped us 
compiling a list of recommendations, an excerpt is found 
below: 
• Divide the networks into smaller zones, making it much 

more difficult for an attacker to penetrate the system when 
she has to pass more routers with corresponding firewalls 
IDSs, IPSs, and networks management policies. 

 
TABLE I. SELECTED VALUES FROM THE TTC CALCULATIONS OF SCENARIO 1. 

Type Object Attack 5% 50% 95% 

Dataflow MMStoMMSDB ManInTheMiddle 4 11 37 

OperatingSystem MMS Compromise 4 11 37 

OperatingSystem MMSDB Compromise 4 11 37 

OperatingSystem MDMS Compromise 4 11 37 

OperatingSystem H-E Compromise 10 22 100a 

a The upper limit was set to 100, meaning we are not interested in attacks that take 
longer than this. 

 

 
 

Fig. 7. A model illustrating the attack on an AMI system from the public Internet. 
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• Only connect systems to the larger networks if they really 

need to be there. 
• Fast and reliable patch management, according to our 

analyses the attacker often uses vulnerabilities in patches 
in order to compromise systems. 

• Use high security policies in access control linked to the 
most sensitive systems, by using defenses like back off, 
hash password repository, no default passwords, password 
policy enforcement, and salting many attacks can be 
delayed (to the extent of non-success). 

 
Although the list of recommendations above seem 

simple and standardized, this is not case. We see endless of 
examples in industry where these simple security measures 
are neglected. Not only can the model and the analyses 
show this in a quantitative way, the approach can also help 
prioritize which or in what order to implement these and 
other. 

 
Fig. 8. The graph output from securiCAD illustrating the TTC for 

compromising the MMS. 

 
To summarize the AMI case, we saw in this project (as 

in many other) that few have architecture models of their 
systems on a holistic level (like EA). When they do, these 
models do not contain details enough in order to analyze 
issues like security and thus they are often of very little use 
in the end. Mostly the models are used for communication 
between different business units as a way of aligning 
vocabulary. One reason often given by our industry partners 
is that it is too costly and difficult to collect the information 
needed for such a model. We believe this is one of the main 
reasons we see increased attention for techniques aiding 
data collection and modeling, including the use of reference 
models. As we discussed above the available reference 
models mainly focus on functional aspects, and structure of 
systems and infrastructure. The particular case described in 
this paper, AMI, shows us that the proposed reference 
model suggests an architecture that in no way is secure 
enough for todays requirements on smart meter systems. By 

running a series of analyses we could show this and provide 
recommendations. By using our reference model with an 
appropriate tool the companies can themselves run more 
analyses and decide what modifications to implement. The 
reference model, in the format proposed in this paper, helps 
them start much faster than if they would need to start from 
scratch and / or do manual analysis using expensive and 
difficult to find manual human expertise. 
 

IX. DISCUSSION 
 

The main design goals for the reference model format 
were high interoperability, expressiveness and ease of use. 
Thanks to the ability to represent uncertainty, the format’s 
expressiveness exceeds that of the sole combination of UML 
and OCL, although considerably lower than that of free text 
with free drawings. A degree of interoperability stems from 
full backward compatibility with the combination of UML 
and OCL.  

Finally, ease of use is supported by the format’s 
simplicity, interoperability and flexibility through the script-
like instantiation. 

In spite of the technical scope of the case shown in section 
VIII, it is possible to apply the format of reference models to 
arbitrary levels of EA models including business architecture, 
customer context [10] and even type 2 architectures [5] (life 
cycle architectures), given their admissibility to modeling 
using UML syntax. 

Relating back to the categories of reuse discussed in 
chapter III, the proposed format of reference models aims to 
primarily contribute through the following: (1) decreased cost 
and increased benefits of reusing EA models – both within 
and across organizations; (2) enabling modelers, especially 
those who produce reference models, to alleviate the 
consumers’ abstraction challenge [44] by abstracting from 
very concrete snapshots of architectures through including 
uncertainty in values and structure; or including the degree of 
abstraction as a parameter of the EA analytical reference 
model, as long as the technical equipment (i.e., EA modeling 
and analysis toolset) allows doing so; (3) supporting 
specialization [43] by the possibility to arbitrarily modify the 
instantiations of reference models; and (4) integration (ibid.), 
although only indirectly, through the choice of highly 
adopted means of modeling (models corresponding to the 
syntax of UML class diagrams [38]) and extensions that are 
backwards compatible (P2AMF [24]). Important aspects of 
reuse that remain largely unaddressed by the proposed format 
is the composability of models [44], since an EA-analytical 
reference model using the format can still correspond to an 
arbitrary EA-analytical metamodel, which co-determines the 
composability. Another composability concern would be the 
case of two reference models corresponding to the same EA-
analytical metamodel, but each using a different reference 
model format. Further, although the validity and credibility of 
reference models are properties that remain to be determined 
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and shown within the life cycles of each individual reference 
model, the format could both constrain achieving these 
properties directly through its limited expressiveness or 
feature set, or support the properties indirectly, to the extent it 
would lead to an increased reuse of EA models in an 
organization, community, or in general. Finally, the 
properties of abstraction and selection as described in [43] are 
seen as entirely external to the format of reference models, 
and hence remain not addressed by it. 

The aim of using the rather large AMI reference model as 
a case was to demonstrate the potential of such reference 
models. This potential is not negligible for the practice of 
modeling and EA analysis, especially for evaluating to-be 
scenarios. On the other hand, it must be admitted that the 
degree of optimization could be lower for smaller and seldom 
used reference models; as well as for reference models 
requiring many additional modifications after instantiation, 
compared to the amount of effort it would save. In the future, 
more comprehensive and rigorous study of existing reference 
models, their formats and their use, would be beneficial. 

Reference models typically serve to provide information 
to their user. However, as a documentation artifact, they also 
need to be updated, perhaps even frequently. To that end, two 
concepts with supportive potential are on the horizon – living 
models [7], and automated collection of EA data [8], [49]. 
Both might contribute to the ease of creating reference 
models and keeping them up-to-date. Other prospective 
future work on reference models include formulating 
concrete reference models suited for automated EA analysis, 
especially in the domains of smart grid and cyber security. 
Proposal of reference models from different domains, both 
industrial and office/corporate, would also be beneficial. 
Lastly, reference models for additional EA viewpoints than 
cyber security could be proposed (e.g., interoperability and 
availability), to the end of formulating multi-aspect reference 
models, combining data for multiple viewpoints and 
metamodels. Finally, the possibilities offered by multi-level 
modeling using clabjects [3] might be embraced to refine the 
supportive value of reference models. 
 

X. CONCLUSIONS 
 

In this paper we propose a format for reference models 
capable of expressing both exact quantities and structure, and 
stochastic uncertainty, and so able to support reuse in 
modeling for EA analysis. Using a simple case, we 
demonstrated that reference models using the format have the 
potential to save modeling effort. Seeing automated EA 
analysis as an emerging trend and an important cornerstone 
of efficient technology management, we believe that 
reference models will enrich EA practice and thus technology 
management, and that the proposed format will inspire steps 
toward higher interoperability between EA analytic 
approaches and solutions. 
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