

Technology Management through Architecture Reference Models:
A Smart Metering Case

Matus Korman, Robert Lagerström, Margus Välja, Mathias Ekstedt, Rikard Blom

KTH Royal Institute of Technology, Stockholm, Sweden

Abstract--Enterprise architecture (EA) has become an

essential part of managing technology in large enterprises. These
days, automated analysis of EA is gaining increased attention.
That is, using models of business and technology combined in
order to analyze aspects such as cyber security, complexity, cost,
performance, and availability. However, gathering all
information needed and creating models for such analysis is a
demanding and costly task. To lower the efforts needed a
number of approaches have been proposed, the most common
are automatic data collection and reference models. However
these approaches are all still very immature and not efficient
enough for the discipline, especially when it comes to using the
models for analysis and not only for documentation and
communication purposes. In this paper we propose a format for
representing reference models focusing on analysis. The format
is tested with a case in a large European project focusing on
security in advanced metering infrastructure. Thus we have,
based on the format, created a reference model for smart
metering architecture and cyber security analysis. On a
theoretical level we discuss the potential impact such a reference
model can have.

I. INTRODUCTION

Modeling and analysis of enterprise and system

architectures provide capabilities that aid effective
management of technology [22], [29]. Examples include the
capability to hold an architectural overview of an enterprise
and its IT environment (with support of as-is models) [31], to
evaluate the viability of prospective improved scenarios
(using to-be models), and to analyze different attributes
within the architectures represented by models (e.g.,
interoperability [48], modifiability [28], flexibility [33],
availability [14] and cyber security [19], [46]). However,
both modeling and analysis of architectures have mostly been
done using human effort. Today, approaches advancing the
modeling and the analysis from mostly manual to largely
automated [18], [49] respectively [24], [25], [31], [35] are
receiving more attention. A vision of such approaches is to
foster the development of EA tools that would essentially
correspond to tools for computer aided design (CAD) used in
other domains of engineering. The aim is to enable automated
analysis and simulation of EA scenarios in a similar fashion
as a whole spectrum of physics aspects can be analyzed and
simulated in today’s CAD tools. Thus, the effort is spent
before the modeled system is actually built and making it less
costly to make changes.

However, gathering facts about architectures and creating
the appropriate models remains a lengthy and demanding
process. Let us consider three model cases.

1) As-is modeling of large IT environments. The process of
gathering data about and modeling IT environments
hosting large enterprise systems (e.g., SAP) or large
industrial control systems (e.g., ABB Network Manager)
together with a myriad smaller systems they interface,
might easily take months of intensive work. Hence, the
data collection and modeling process in itself is an
expensive and demanding part of architectural work,
which calls for support.

2) Automated EA analysis of to-be scenarios. An analytical
metamodel (e.g., [19]) might require or notably benefit
from having models with high amount of detail as input.
At the same time however, analysts and organizations
creating such to-be models might be hindered by the large
amount of uncertainty present in the process. For instance,
consider an industrial plant evaluating a migration to a
new control system. Obtaining exact and detailed data
would be difficult, since the organization does not yet
possess an implementation of such system, nor has its
detailed documentation available. Consequently, the
analyst is forced to make numerous assumptions, which
can require tedious intelligence gathering, consulting, or
plain guessing.

3) New technological trends. Innovation that continuously
takes place around the globe yields new types of solutions
that offer improvement potential for organizations, but at
different expenses and risks. Hence, there is a need to
evaluate these before making an investment decision.
Examples may include cloud computing [32], the 3rd
platform [20], IoT [4], or software-defined networking
[42]. While some might still be defined very loosely,
others can be modeled with more exactitude and detail.
Moreover, models of these architectures can be reused
over time and even between specific implementations.

To sum up, modeling for EA analysis often requires a lot

of details. In addition to the fact that EA data collection is an
expensive process as such. The cost of collecting data can be
reduced through prioritizing what data to collect [37],
automatic data collection [18], [49], and reuse of models
including using so called reference models (as proposed in
this paper).

While a number of contributions have been done in the
field of reference architectures, an extension of the concept
for purposes of automated EA analysis has not been
proposed. In this article, we present a format for reference
models designed for enabling reuse in modeling for

2338

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

automated EA analysis.
The reference model format is suited for object models

following the syntax of UML [38] class models. The format
allows the use of a programming language such as OCL [39],
and allows representing uncertainty through the extensions of
P2AMF [24], [25]. We also argue that the use of reference
models in the proposed format can decrease the modeling
effort needed to model large IT architectures. We discuss this
using a case study as a proof of concept. The case study is
based on a large European project on security in advanced
metering infrastructure. We have, based on the proposed
format, created a reference architecture for smart metering
systems and cyber security analysis of such.

This article unfolds as follows. Chapter II introduces the
concept of reference architecture as used in literature and
presents related work. Chapter III introduces the issue of
reuse, and lists a few attributes relevant for reusing EA
models. Chapter IV introduces the concept of EA analysis,
and a few EA analysis frameworks. Chapter V describes the
design of this study. Chapter VI describes the context of
using reference models as employed in this study and chapter
VII presents our proposed format of reference models for EA
analysis. Subsequently, chapter VIII evaluates the reference
model format using a real case on advanced metering
systems. Chapter IX provides a discussion, directions for
future work, and finally chapter X concludes the study.

II. THE CONCEPT OF REFERENCE ARCHITECTURES

AND RELATED WORK

The purpose of this section is twofold. First, it introduces
the concept of reference architectures – something that a
reference model describes. Second, it briefly mentions
contributions that relate to this study and reference
architectures in a broader sense.

Reference architectures have been proposed for a number
of domains [1], [20], [32] and even a framework for
classifying reference architectures has been proposed [1].

Bernus & Noran [6] differentiate between two types of
architectural models commonly proposed by EA scholars.
The first, type 1 architectures, also called reference models or
partial models, have the essence of generally applicable
blueprints. The second, type 2 architectures, also called
enterprise reference architectures, have the essence of life
cycle architectures. In GERAM [5] (generalized enterprise
reference architecture and methodology), the two types of
architectures correspond to the concepts of PEM (partial
enterprise model) and GERA (generalized enterprise
reference architecture), respectively. In literature however,
the term reference architecture often refers to a type 1
architecture (reference model).

Cloutier et al. [10] provide a comprehensive and
systematic overview of the concept of reference architecture.
In spite of varying specific understanding of the concept

across scientific literature and practice, reference architecture
is here seen as an artifact with the purpose to provide
guidance for further developments (e.g., through facilitating
multi-site, multi-vendor, multi- [...] system creation and life-
cycle support, effective creation of new products, and
achieving interoperability between many different and
evolving systems). Further according to that view, a reference
architecture usually captures the accumulated architectural
knowledge of thousands of man-years of work, ranging from
why (e.g., value chain, application, etc.), what (e.g., systems,
functions, etc.), to how (e.g., design views and diagrams,
design patterns, etc.). According to [10], objectives of
reference architectures include managing synergy, providing
guidance in form of architecture principles and best practices,
an architecture baseline and an architecture blueprint,
capturing and sharing architectural patterns, providing a
common lexicon and taxonomy, a common architectural
vision, modularization and the complementary context,
articulation of domain and realization concepts, explicit
modeling of functions and qualities above systems level, and
explicit decisions about compatibility, upgrade and
interchangeability.

Several studies attempt to provide general models of
reference architectures or guidance in design of reference
architectures. Examples include Nakagawa et al. [36] for EA
reference architectures, Galster & Avgeriou [15] for software
architectures, and Irlbeck et al. [21] for smart energy systems.

There are also proposals of formats for EA reference
models [9], [21]. However, none of the identified works
propose a reference model format explicitly and generically
suited for automated EA analysis [14], [24], [25], [48]. The
closest match in terms of included detail and thus support to
automated analysis is the use of reference models in software
engineering [34].

Since creating models suitable for automated EA analysis
poses increased demands for detailed data (e.g., costs, failure
rates, probabilities of events, configuration details and other
properties) and so becomes more costly, increasing the
modeling efficiency helps keeping the whole EA analysis
process more viable.

Using reference models, which contain both reusable
structure and generic assumptions regarding detailed data,
brings reuse into modeling in a way that can satisfy the needs
of metamodels for automated EA analysis.

III. REUSE AS THE PURPOSE OF REFERENCE MODELS

The nature and the use of reference models indicate its
main purpose – to promote reuse of architectural knowledge
– be it in a context of industrial development, analysis,
research, education, or some other.

The issue of reuse has been around for about two decades,
mostly in the domain of software engineering. Frakes & Kang
[13] provide a brief overview of software reuse research,

2339

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

among other mentioning domain engineering (also known as
product line engineering) and a number of methods and
techniques therein, which attempt to promote software
productivity through reuse. Somewhat closer to the scope of
reference models, Robinson et al. [44] provide their views on
the issue of reuse of simulation models (i.e., artifacts ranging
from simple mathematical models to software systems for
military simulations). Although these works relate to the
subject of this study, their approaches to supporting the reuse
of architectural knowledge are often very different from those
applicable to reference models of enterprise architectures.

Further toward the issue of model reuse, Robinson et al.
[44] identifies two major influencing factors: (1) the validity
and credibility of the model; and (2) the costs and benefits of
reuse, which undoubtedly also apply to EA models. The work
also mentions a major obstacle to reuse – the composability
problem [of the reused model with its environment]. The
composability problem also applies to EA models, since EA
models typically follow some predefined syntax (e.g., [41]),
and reusing a model with entirely different syntax might
imply the need of a major rework. In EA analysis, the need to
additionally capture a multitude of properties of modeled
entities according to an analytical metamodel even rises the
challenge. Yet another piece of EA-applicable remark in the
work relates to the pitfalls of reusing models – the
abstraction challenge, saying that the simplest model fitting
the purpose is typically the best. When reusing a model, the
level of abstraction might not be readily compatible with the
rest of the model environment, which it shall enrich, which
leads to the risk that an overly detailed model would still be
employed in an analytic task for the sake of reuse.

Finally, Pidd [43] lists four properties that a reuse strategy
should support (related to models for simulation): (1)
abstraction as the ability to provide succinct, high-level
descriptions of reuse artifacts to ease the understanding of
their purpose, nature and behavior; (2) selection to aid
performing reuse through mechanisms that allow the location,
comparison and selection of reuse artifacts; (3) specialization
(modification) of the reuse artifacts into usable, concrete
entities; and (4) integration to ease the combination,
connection and communication between reuse artifacts. All of
the above likely apply to reference models in EA as much as
to models for simulation or pieces of software reuse artifacts.

IV. BACKGROUND

Enterprise architecture (EA) is defined as “a coherent
whole of principles, methods, and models that are used in the
design and realization of an enterprise’s organizational
structure, business processes, information systems, and
infrastructure;” it attempts to capture the essentials of the
business, IT and its evolution [31]. In this light, EA can be
adopted and used for a multitude of purposes including
documentation, communication support, design, analysis,

transformation, decision-making et cetera [29]. In this paper
we use the term enterprise architecture, but ofte we also mean
system architecture or especially system-of-systems
architecture (like in our AMI case in chapter VIII). The
common denominator is that the models of these architectures
are often holistic, large, complex, contain many different
types of objects, and usually requires more than human effort
to be really useful in analysis and simulation.

Metamodeling [2], [27] can be briefly described as “the
modeling of models” [47]. A meta- model describes the
syntax of its instance models and their permitted structure
(i.e., classes with their properties, associations with their
cardinality constraints). A corresponding instance model can
then describe instances of the classes (i.e., objects with their
property values), and instances of the associations (i.e.,
connections).

Similarly as a metamodel relates to instance models, does
a meta-metamodel relate to meta-models. An example of
such meta-metamodel is the Meta Object Facility (MOF)
[40]. Recent contributions have refined this line of
abstraction even further through the concepts of clabject and
power type, into level-agnostic modeling [3], [16], providing
additional freedom of abstraction as compared to MOF.
Although metamodeling is commonly seen as a means of
specifying and constraining models on a lower level of
abstraction, metamodels can also possess active analytic
capabilities (e.g., by embedding executable code for the
purposes of inference).

In recent years, EA analysis has been receiving more
attention [24], [25], [30], fueled by decision makers’ needs to
compare different alternative scenarios and make trade-offs
between their different aspects (e.g., service availability [14],
interoperability [48], cyber security [19], [46], or costs
[11],[23],[26]) to predict the effects of prospective decisions.
Rather than as a purely human intellectual activity, this study
views the concept of EA analysis as a process largely
automated through computational processing that evaluates
arbitrary aspects of EA models. Lankhorst [31] identified two
dimensions for classifying techniques of EA analysis: (1)
functional vs. quantitative; and (2) analytical vs. simulation.
While functional analyses can be used to gain insight into the
behavior of an architecture, identify impacts of changes to it,
or validate its correctness; quantitative analyses can provide
quantitative answers such as “how much downtime” etc.
While analytical techniques typically calculate a unique,
reproducible result; simulation techniques “run” the model
and can employ stochastic techniques.

A. Framework for enterprise architecture analysis

The Predictive, Probabilistic Architecture Modeling
Framework (P2AMF) [24], [25], is a framework enabling
automated analysis of architectures, based on metamodels.
Although primarily intended for quantitative simulations, it
can also employ analytical techniques, mostly quantitative.

2340

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

P2AMF extends the combination of Unified Modeling
Language (UML) [38] and Object Constraint Language
(OCL) [39] in three major ways. First, it allows one use
stochastic value expressions by using probability distributions
(e.g., “normal(25, 5)” for an input (∈ R) from normal
distribution with µ = 25 and σ2 = 5, or “bernoulli(0.75)” for a
boolean input with 75% chance of yielding true). Second, it
enables specifying stochastic existence of objects (i.e.,
structural uncertainty). Third, it uses Monte Carlo approach
for simulation: the model is first sampled into a number of
deterministic UML/OCL diagrams, which are subsequently
evaluated according to the OCL logic, UML structure, and
objects’ property values.

B. Analytical metamodels

There are numerous metamodels available for architecture
analysis, in this subsection we mention a few. The reason we
for instance choose to briefly present CySeMoL below is that
it is a predecessor of a commercially available modeling tool
for architecture modeling and cyber security analysis called
securiCAD1 [12].

The Cyber Security Modeling Language (CySeMoL) [19],
[46] is a metamodel for the analysis of cyber security in IT
architectures, implemented in the P2AMF framework [24],
[25]. CySeMoL strives for a holistic approach to evaluating
security and is even built for coping with uncertainty. It
defines over twenty assets and over hundred different attack
steps and defense mechanisms.

CySeMoL uses Bayesian networks and attack graphs [45]
to produce a map of reachability across an IT architecture
model. The resulting map contains a set of probabilities, with
which the attacker, given certain assumptions, can reach each
attack step of each asset present in the model.

Other similar metamodels include a framework for
analysis of IT service availability [14], a metamodel for
interoperability analysis [48], and an educational-grade
metamodel for multi- attribute prediction [11],[23],[26].

As a commonality among the above-mentioned
metamodels, each entity (e.g., an operating system or an IT
service) commonly has a set of properties, the values of
which would usually occur within certain ranges and follow
certain probabilistic distributions for a specific piece of
reality modeled (for some examples, Fig.s 6 & 7). Hence,
there is a potential for generalizing and subsequently reusing
parts of the models. The reuse can apply within a single
model, across multiple models, and even across organizations
and modeling efforts taking place at different times.

V. STUDY DESIGN

The study builds on the foundations of design science

1 For more information about securiCAD visit: www.foreseeti.com

[17], proposes a reference model format suited for reuse in
modeling for EA analysis, and evaluates its contributory
potential on a real case. Below, this section provides a brief
summary of the study.

Research in automated EA analysis has gained attention,
and a number of analytical metamodels have already been
developed. At the same time, reference models do not
typically contain information needed by analytical
metamodels, and neither has a format for machine-friendly
representation of such information in reference models been
proposed. Hence, the need for the format presently exists, and
is seen as the primary problem within this study.
Additionally, as researchers and practitioners face greater
needs for improving the efficiency of and reuse in modeling
for automated EA analysis, custom formats of reference
models might start being proposed, likely incompatible with
one another. Considering the difficulties such a
diversification might pose for the interoperability of solutions
for EA modeling and analysis in the long run, the need to
take an early step toward unification is a secondary problem
within the study.

To achieve a highly interoperable and hence easily
adoptable artifact, the research process was constrained by
adherence to the bases of UML [38], and used the
technological bases of OCL [39] and P2AMF [24], [25]. The
research process led further through existing analytical
metamodels [11], [14], [19], [23], [26], [46], [48],
specifically in the reliance on sets of attributes found to
notably impact the level of an attribute under consideration
(e.g., cyber security or service availability).

The study aimed at formulating a format that is
interoperable, expressive, and easy to use, to allow reducing
modeling effort, provided that a generic reference model can
be reused in the modeling process. Requirements for the
format were on the one hand the full backward compatibility
with UML and OCL, and on the other hand the possibility to
represent uncertainty to more generically enable reuse in
modeling for EA analysis.

The artifact resulting from this study can be seen as an
enrichment or an extension of the concept of partial
enterprise models (PEMs) as presented in GERAM [5], by
the ability to stochastically express uncertainty of data values
and object-relational structure, and hence improved support
for model reuse.

The evaluation of the format takes into account a model of
a complex IT environment, which is quantitatively analyzed
according to the difference in modeling effort needed, both in
an ideal and an assumed realistic scenario of application. The
modeling effort is measured by counts of objects and
connections to instantiate, and counts of property values to
set or adjust.

The contribution of this study is a piece of design
construction knowledge (i.e., foundations [17]) regarding a
format for representing reference models that may contain

2341

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

uncertainty, enabling greater reuse in models for automated
EA analysis.

Although this article is mostly intended for a technical
audience familiar with EA (e.g., EA solution architects,
analysts and scholars) and modeling technologies (especially
UML and OCL), the article also contains useful information
for managers involved in EA decision-making.

VI. THE USE OF REFERENCE MODELS IN EA
ANALYSIS

This chapter tries to describe the use of reference models

in EA in terms of a workflow, and so provide frames for
better understanding of the concept of reference model as
treated in this study.

First of all, we would like to note that a model is an
excessively broad category of artifacts, which can be divided
into concrete models (e.g., mechanical or software models),
as well as abstract ones (e.g., mathematical models, mental
models, or architectural models). Further in that direction, an
UML-like object-relational model is merely a subset of
architectural models, which delimits this study, and the
concept of reference model as treated herein.

Considering a simple modeling work flow (illustrated in
Fig. 1), in which a person uses a computer to create, maintain
and draw benefits of EA models, as well as through our own
modeling experience, we identified a set of requirements for
the functionality that could aid EA modelers and other users
in performing their tasks related to EA models, besides just
the information present in them as in static documents.

The requirements are as follows:
• The availability of a reference model shall offer the

potential for the modeler to either reuse modeling content
and so save modeling effort, or reuse otherwise
unavailable knowledge, as compared to a situation
without the reference model;

• A reference model must be able to express a snapshot of a
piece of concrete architecture;

• A reference model shall be able to express uncertainty in
case several architectural alternatives are common for the
architecture under consideration (e.g., several values or a
range instead of just a single value; or several structural
alternatives instead of just one structural alternative);

• A reference model shall be able to express validation
constraints, so as to enable a software tool issue warnings
to the modeler upon omitting important aspects of what
needs to be modeled for correct representation, or
breaching constraints that need to be complied to with
regards to a given domain and the modeled architecture;

• A reference model shall be able to express logic for
suggesting default alternatives, best choices, or best
guesses when applicable;

• A reference model shall be possible to further specify and
arbitrarily modify according to the modeling needs.

Clearly, the format of reference models itself cannot

provide all the above-mentioned functionality, a modeling
tool as a piece of software can (which is beyond the scope of
this study).

However, the reference models complying with the format
must be able to contain the above-mentioned information for
the functionality to be provided by the tool, in connection
with each specific reference model.

Fig. 1. Illustration of a modeling workflow: the upper row denotes the handling of a larger EA model, while the lower row denotes
handling of a reference model, which is potentially used in the former.

2342

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

VII. FORMAT OF REFERENCE MODELS FOR EA
ANALYSIS

The reference model format reflects the MOF [40] meta-

metamodel, besides some slight differences. This study
focuses on the concepts; metamodel, instance model, and
template, the last of which is intended to contain a reference
model, according to the following definitions (using set
notation) and as seen in Fig. 2:

Metamodels M ⊂ (C, A, I)

Classes C ⊂ (name, T) : name ∈ String
Attributes T ⊂ (name, type, defaultDerivation) :

name ∈ String,
type ∈ DataType,
defaultDerivation ∈ String

Associations A ⊂ (cls1, cls2, name, cardmin, cardmax) :
cls1 ∈ C, cls2 ∈ C,
name ∈ String,
cardmin ∈ N, cardmax ∈ N

Invariants I ⊂ (class, name, derivation)
class ∈ C,
name ∈ String,
derivation ∈ String

Instance models I ⊂ (m, O, R) : m ∈ M
 Objects O ⊂ (class, P, name, existenceProbability) :

class ∈ C,
name ∈ String,
existenceProbability ∈ R[0,1]

Properties P ⊂ (object, attribute, derivation) :
object ∈ O,
attribute ∈ T,
derivation ∈ String

Connections R ⊂ (obj1, obj2, association,
existenceProbability) :

obj1 ∈ O, obj2 ∈ O,
association ∈ A,
existenceProbability ∈ R[0,1]

Templates T ⊂ (m, O, R) : m ∈ M
(Immediately after instantiation of t ∈ T in i ∈ I):

m ∈ M, i ∈ I, t ∈ T, i ∈ N : ti ⊆ i ⇒ mti ⊆ mi

This study treats the concepts as follows. A metamodel
consists of a set of classes, associations and invariants. A
class contains its name and a set of attributes (cf. property in
MOF). An attribute consists of its name, its data type, and its
default derivation (in a programming language such as OCL),
which can in its simplest form express the default value of all
corresponding properties (property here seen as an instance
model level entity corresponding to an attribute on the
metamodel level). An association is identified by a directed
relation between two classes together with its name, and
further contains its minimal and maximal cardinality. An
invariant consists of a name, and a derivation, which returns a
Boolean value, based on whether the constraint it expresses is
satisfied, or not. An instance model consists of a metamodel,
to which it corresponds, a set of objects and a set of
connections between the objects. An object is identified by its
class, its properties (corresponding to the class’ attributes), its
name, and the probability of its existence. A connection is a
directed relation between two objects, corresponding to an
association (defined in the metamodel), and further having a
probability of its existence. A template is in fact a special
type of instance model; they are similar in essence. Both
always correspond to a given metamodel. In order for a
template to be instantiable in an instance model, the
metamodels of the former has to be equal or at least be a
subset of the latter. Provided this criterion, multiple templates
can be instantiated in an instance model, and a single
template can be instantiated multiple times.

For the sake of interoperability, the reference model
format is built on the foundations of UML [38]. Since the
format needs to define computation between values of
properties and on the level of associations, there is a need for
a expressions of a programming language used within the
models (e.g., OCL [39]). UML class diagrams define the
structure of models, their class/object-relational syntax, and
how data (e.g., parameters in form of properties) are defined
and stored in the models. A programming language such as
OCL enables in-model computation (e.g., derivation of
property values for the purposes of inference) and elegant
querying for data within the object-relational structure of a
model.

Fig. 2. UML depiction of the proposed reference model format.

2343

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

The ability to represent uncertainty is a major feature of
the proposed reference model format, which opens for greater
reuse in modeling for EA analysis. Uncertainty tends to arise
in the process of abstracting from very specific, real models,
into generic models intended for broader reuse. For instance,
a concrete installation of an operating system might be
configured highly specialized while the configuration of a
typical installation of that operating system is different, more
generic, and some parameters fall within ranges rather than
exact, point-like, quantities. Hence, in addition to exact
quantities and structure, a reference model can express ranges
with probability distributions of quantities, as well as
multiple structural alternatives. The proposed format suggests
the use of P2AMF [24], [25], which supports expressing
stochastic uncertainty in models, and at the same time fully
preserves the backward compatibility with both UML and
OCL.

Fig. 3. Relationships between a reference model, metamodel and instance
model.

From a persistence perspective, templates containing

reference models are meant to reside independently of
instance models, while their content is truly instantiated in an
instance model first upon its use (inclusion), as depicted in
Fig. 3.

The use of a reference model consists in the event of
instantiating its content in an instance model (see Fig. 4),
much like by running a script there. Hence, a reference model
can be used in an instance model multiple times, and each of
the sets of elements instantiated by the use of the reference
model can afterwards be arbitrarily modified in the instance
model, without it affecting the original reference model nor
other instantiations of it. This flexibility renders useful when
applied to similar yet not equal parts of an instance model.

Fig. 4. Reference model inside an instance model (illustration).

An example application of reference models is illustrated

in chapter VIII.

VIII. CASE: CYBER SECURITY IN AMI SYSTEMS

The demand for energy is increasing at the same time as
we need to decrease our CO2 emissions. In 2007 the
European Union agreed upon a set of goals in order to reduce
CO2

 emissions and energy consumption, as well as raising
the shares of green power and the energy efficiency. More
precisely the goals for 2020 are: 20% cut in greenhouse gas
emission (compared to 1990 levels), 20% of EU energy from
renewables, and 20% improvement in energy efficiency. This
is called the 20-20-20 targets.

In order to reach the energy efficiency target the European
Union has adopted a number of measures, incl. the planned
rollout of close to 200 million smart meters for electricity and
45 million for gas by 2020. The result of this rollout alone is
calculated to reduce emissions by 9% and an annual
household energy reduction by comparable amounts. When a
smart device is going to be delivered to almost 80% of the
households in Europe there is lot of things that needs to be
considered in terms of privacy, integrity and security. These
issues are addressed by the European Commission, in forms
of recommendations and regulatory requirements. The case
described in this paper as a proof-of-concept for our reference
architecture format is a result of EU’s focus on energy, and
especially advanced meter systems and their security. The
case is a part of larger EU project where one of the goals was
to produce an AMI reference architecture for cyber security
analysis.

Basically, there are no existing reference models for
security analysis and AMI. However, there are some
reference models for AMI systems and these have been used
as a foundation for the reference model created in the project,
see Fig. 5.

The reference model was implemented using securiCAD
[12], as mentioned in chapter IV-B.

A. The AMI reference model

Primarily, the creation of the AMI security reference

2344

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

model was done by studying various available reference
architectures for AMI incl. reports from different AMI-
system vendors and research on AMI, AMI-security, and,
smart grids. One such source of inspiration can be seen in
Fig. 5. The modeling was a four/five step iterative process; 1)
logical level incl. systems and dataflows, 2) protocols and
software products, 3) users, user accounts, and access control,
4) network layer incl. routers, firewalls, IDS, and IPS, and
finally adding the 5) attacker(s) for the simulation and
scenarios.

The AMI reference model is divided into three levels of
abstraction: i) Network level with entities like; networks
zones, routers, firewalls, zone management, IDS, and IPS. ii)
Logical level with all the IT-systems, OT-systems, (incl.
operating system, client, and server), data store, user, user
account, and access control. iii) Data flows with associated
protocols.

In order to grasp the full model one would need to install
securiCAD and browse the different views. In this paper we
have chosen one view in order to exemplify what a reference
model and its accompanying analysis could look like and
how it could be used. In Fig. 6 we present the Meter
Management System (MMS) view. The MMS manages meter
data and meter operations to enable advanced metering
infrastructure (AMI). A MMS usually has a great flexibility

for operating system platforms, database selection, data
acquisition approaches, look and feel, reporting, and alarm
capabilities. This view also contains the AMI Forecasting
System (AMI FS), which has the role to collect and process
forecast data to the AMI. There is also a connection between
MMS and the EAM being a lifecycle management system of
physical assets of an organization. Included is also the
Customer Information System (CIS) collecting customer
notifications, billing and payment information/confirmations,
and service order request from customers, as well as the
Outage Management System (OMS) handling outage record
requests, activity records, and planned outage info.

Of course you can use this kind of reference model to
design your AMI system focusing on the functions and
structure, and this is also what most reference models are for.
However, the true value of a reference model comes when
you can use it for analysis and making sure that the
architecture proposed is actually any good. Being able to
model and analyze before implementing your system can help
you save time since you can test your design decisions before
you actually implement them. In the next subsection we will
demonstrate how the AMI reference model can be used for
cyber security analysis.

Fig. 5. One of two reference models used as a basis for the one proposed in our case.

2345

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

Fig. 6. An example view of the AMI reference model implemented in securiCAD.

B. Security analysis of an AMI system

In total we analyzed three different scenarios within the
project; 1) attack from the public Internet, 2) attack from a
customer, 3) structural changes to the architecture.

The results of these scenarios are reported with models,
graphs, attack paths, and tables. The graphs show the time it
takes to compromise (TTC) each part of the model, the time it
takes for an attacker (professional penetration tester) to
succeed with an attack on a chosen entity. Basically the graph
illustrates the probability to succeed in X days, where the
graph explicitly highlights how many days it is likely to
succeed within 5%, 50%, and 95%.

In securiCAD, attack paths are presented in three different
views; all paths, critical path, and fastest path. To limit the
section somewhat, we have chosen to present the fastest path
for some selected attributes. This is a good addition to the

distribution graphs in order to understand the complexity of
an attack.

The tables are used as a supplement for easier comparison
of results. The tables should be interpreted the same way as
the distribution graphs, described above.

The first scenario is an attack coming from the public
Internet through an external server. The attacker’s target in
this scenario is the MDMS (Meter Data Management System)
where the attacker wants to find sensitive customer data and
the MMS (Meter Management System) where she can control
a customer’s meter in the sense it could be able to shut out
customers from the grid and tinker with prepaid accounts.

With the heat map (Fig. 7 we can se that the attacker
manages to penetrate more or less the whole system (all
objects in the model have attributes that are marked as red
meaning it is possible for an attacker to succeed with that

2346

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

particular attack within a certain threshold).
Table I shows some of the TTC numbers, e.g. a man in the

middle attack of the dataflow between the MMS and the
MMS database succeeds in 5% of the attempts given 4 days,
while given 37 days 95%. The same information can also be
shown by the distribution graphs, as in Fig. 8.

In the AMI case we have one large reference model
describing the advanced metering infrastructure according to
commonly well-known functional reference models available.
Doing a cyber security analysis using different possible attack
scenarios shows what weaknesses one would have if
implementing the reference architecture as it is with out any
modifications. Since this is a reference architecture most
companies would do some changes to it before
implementation, both functionally and non-functionally.

Looking at scenario 1 in our analysis, we can clearly see that
changes need to be made in regards of security. The next step
would thus be to make appropriate changes to the architecture
and run the analysis again to see if there are improvements
and how much of an improvement it is. One could also test
different changes to decide which one(s) is more
economically efficient to implement.

Running our three scenarios and exploring these helped us
compiling a list of recommendations, an excerpt is found
below:
• Divide the networks into smaller zones, making it much

more difficult for an attacker to penetrate the system when
she has to pass more routers with corresponding firewalls
IDSs, IPSs, and networks management policies.

TABLE I. SELECTED VALUES FROM THE TTC CALCULATIONS OF SCENARIO 1.

Type Object Attack 5% 50% 95%

Dataflow MMStoMMSDB ManInTheMiddle 4 11 37

OperatingSystem MMS Compromise 4 11 37

OperatingSystem MMSDB Compromise 4 11 37

OperatingSystem MDMS Compromise 4 11 37

OperatingSystem H-E Compromise 10 22 100a

a The upper limit was set to 100, meaning we are not interested in attacks that take
longer than this.

Fig. 7. A model illustrating the attack on an AMI system from the public Internet.

2347

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

• Only connect systems to the larger networks if they really

need to be there.
• Fast and reliable patch management, according to our

analyses the attacker often uses vulnerabilities in patches
in order to compromise systems.

• Use high security policies in access control linked to the
most sensitive systems, by using defenses like back off,
hash password repository, no default passwords, password
policy enforcement, and salting many attacks can be
delayed (to the extent of non-success).

Although the list of recommendations above seem

simple and standardized, this is not case. We see endless of
examples in industry where these simple security measures
are neglected. Not only can the model and the analyses
show this in a quantitative way, the approach can also help
prioritize which or in what order to implement these and
other.

Fig. 8. The graph output from securiCAD illustrating the TTC for

compromising the MMS.

To summarize the AMI case, we saw in this project (as

in many other) that few have architecture models of their
systems on a holistic level (like EA). When they do, these
models do not contain details enough in order to analyze
issues like security and thus they are often of very little use
in the end. Mostly the models are used for communication
between different business units as a way of aligning
vocabulary. One reason often given by our industry partners
is that it is too costly and difficult to collect the information
needed for such a model. We believe this is one of the main
reasons we see increased attention for techniques aiding
data collection and modeling, including the use of reference
models. As we discussed above the available reference
models mainly focus on functional aspects, and structure of
systems and infrastructure. The particular case described in
this paper, AMI, shows us that the proposed reference
model suggests an architecture that in no way is secure
enough for todays requirements on smart meter systems. By

running a series of analyses we could show this and provide
recommendations. By using our reference model with an
appropriate tool the companies can themselves run more
analyses and decide what modifications to implement. The
reference model, in the format proposed in this paper, helps
them start much faster than if they would need to start from
scratch and / or do manual analysis using expensive and
difficult to find manual human expertise.

IX. DISCUSSION

The main design goals for the reference model format
were high interoperability, expressiveness and ease of use.
Thanks to the ability to represent uncertainty, the format’s
expressiveness exceeds that of the sole combination of UML
and OCL, although considerably lower than that of free text
with free drawings. A degree of interoperability stems from
full backward compatibility with the combination of UML
and OCL.

Finally, ease of use is supported by the format’s
simplicity, interoperability and flexibility through the script-
like instantiation.

In spite of the technical scope of the case shown in section
VIII, it is possible to apply the format of reference models to
arbitrary levels of EA models including business architecture,
customer context [10] and even type 2 architectures [5] (life
cycle architectures), given their admissibility to modeling
using UML syntax.

Relating back to the categories of reuse discussed in
chapter III, the proposed format of reference models aims to
primarily contribute through the following: (1) decreased cost
and increased benefits of reusing EA models – both within
and across organizations; (2) enabling modelers, especially
those who produce reference models, to alleviate the
consumers’ abstraction challenge [44] by abstracting from
very concrete snapshots of architectures through including
uncertainty in values and structure; or including the degree of
abstraction as a parameter of the EA analytical reference
model, as long as the technical equipment (i.e., EA modeling
and analysis toolset) allows doing so; (3) supporting
specialization [43] by the possibility to arbitrarily modify the
instantiations of reference models; and (4) integration (ibid.),
although only indirectly, through the choice of highly
adopted means of modeling (models corresponding to the
syntax of UML class diagrams [38]) and extensions that are
backwards compatible (P2AMF [24]). Important aspects of
reuse that remain largely unaddressed by the proposed format
is the composability of models [44], since an EA-analytical
reference model using the format can still correspond to an
arbitrary EA-analytical metamodel, which co-determines the
composability. Another composability concern would be the
case of two reference models corresponding to the same EA-
analytical metamodel, but each using a different reference
model format. Further, although the validity and credibility of
reference models are properties that remain to be determined

2348

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

and shown within the life cycles of each individual reference
model, the format could both constrain achieving these
properties directly through its limited expressiveness or
feature set, or support the properties indirectly, to the extent it
would lead to an increased reuse of EA models in an
organization, community, or in general. Finally, the
properties of abstraction and selection as described in [43] are
seen as entirely external to the format of reference models,
and hence remain not addressed by it.

The aim of using the rather large AMI reference model as
a case was to demonstrate the potential of such reference
models. This potential is not negligible for the practice of
modeling and EA analysis, especially for evaluating to-be
scenarios. On the other hand, it must be admitted that the
degree of optimization could be lower for smaller and seldom
used reference models; as well as for reference models
requiring many additional modifications after instantiation,
compared to the amount of effort it would save. In the future,
more comprehensive and rigorous study of existing reference
models, their formats and their use, would be beneficial.

Reference models typically serve to provide information
to their user. However, as a documentation artifact, they also
need to be updated, perhaps even frequently. To that end, two
concepts with supportive potential are on the horizon – living
models [7], and automated collection of EA data [8], [49].
Both might contribute to the ease of creating reference
models and keeping them up-to-date. Other prospective
future work on reference models include formulating
concrete reference models suited for automated EA analysis,
especially in the domains of smart grid and cyber security.
Proposal of reference models from different domains, both
industrial and office/corporate, would also be beneficial.
Lastly, reference models for additional EA viewpoints than
cyber security could be proposed (e.g., interoperability and
availability), to the end of formulating multi-aspect reference
models, combining data for multiple viewpoints and
metamodels. Finally, the possibilities offered by multi-level
modeling using clabjects [3] might be embraced to refine the
supportive value of reference models.

X. CONCLUSIONS

In this paper we propose a format for reference models
capable of expressing both exact quantities and structure, and
stochastic uncertainty, and so able to support reuse in
modeling for EA analysis. Using a simple case, we
demonstrated that reference models using the format have the
potential to save modeling effort. Seeing automated EA
analysis as an emerging trend and an important cornerstone
of efficient technology management, we believe that
reference models will enrich EA practice and thus technology
management, and that the proposed format will inspire steps
toward higher interoperability between EA analytic
approaches and solutions.

ACKNOWLEDGMENTS

This project has received funding from the European
Unions Seventh Framework Programme for research,
technological development and demonstration under grant
agreement no. 607109 (SEGRID). Also, part of it has been
financed by KIC InnoEnergy, SweGrids (www.swegrids.se),
ÅForsk, and the SALVAGE project (Cyber-physical security
for low-voltage grids) funded via ERA-Net SmartGrids
programme.

REFERENCES

[1] Angelov, S., P. Grefen and D. Greefhorst, “A classification of software
reference architectures: Analyzing their success and effectiveness,” in
Software Architecture, 2009 & European Conference on Software
Architecture. WICSA/ECSA 2009. Joint Working IEEE/IFIP
Conference on. IEEE, pp. 141–150, 2009.

[2] Atkinson, C. and T. Kuhne, “Model-driven development: a
metamodeling foundation,” Software, IEEE, vol. 20, no. 5, pp. 36–41,
2003.

[3] Atkinson, C., B. Kennel and B. Goß, “The level-agnostic modeling
language,” in Software Language Engineering. Springer, pp. 266–275,
2011.

[4] Atzori, L., A. Iera and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787-2805, 2010.

[5] Bernus, P., L. Nemes and G. Schmidt, Handbook on enterprise
architecture. Springer, 2003.

[6] Bernus, P. and O. Noran, “A metamodel for enterprise architecture,” in
Enterprise Architecture, Integration and Interoperability. Springer, pp.
56–65, 2010.

[7] Breu, R., B. Agreiter, M. Farwick, M. Felderer, M. Hafner and F.
Innerhofer-Oberperfler, “Living models-ten principles for change-
driven software engineering.” Int. J. Software and Informatics, vol. 5,
no. 1-2, pp. 267–290, 2011.

[8] Buschle, M., M. Ekstedt, S. Grunow, M. Hauder, F. Matthes and S.
Roth, “Automating enterprise architecture documentation using an
enterprise service bus,” in AMCIS 2012 Proceedings, paper 13, 2012.

[9] Cason Jr, W. C., C. F. Dalton, J. S. Morio, S. W. Reynolds, R. Renteria
and S. Lemay, “Method and system for a reference model for an
enterprise architecture,” US Patent 7,890,545, Feb. 15 2011.

[10] Cloutier, R., G. Muller, D. Verma, R. Nilchiani, E. Hole and M. Bone,
“The concept of reference architectures,” Systems Engineering, vol. 13,
no. 1, pp. 14–27, 2010.

[11] Ekstedt, M., P. Johnson and R. Lagerström, “Enterprise Architecture
Modeling and Analysis of Quality Attributes–The Multi-Attribute
Prediction Language (MAPL),” in 1st Scandinavian Workshop on the
Engineering of Systems-of-Systems (SWESoS 2015), p. 10, 2015.

[12] Ekstedt, M., P. Johnson, R. Lagerström, D. Gorton, J. Nydren and K.
Shahzad, “securiCAD by Foreseeti: A CAD Tool for Enterprise Cyber
Security Management,” in Enterprise Distributed Object Computing
Workshop (EDOCW), 2015 IEEE 19th International. IEEE, pp. 152–
155, 2015.

[13] Frakes, W. B. and K. Kang, “Software reuse research: Status and
future,” IEEE transactions on Software Engineering, no. 7, pp. 529–
536, 2005.

[14] Franke, U., P. Johnson and J. König, “An architecture framework for
enterprise it service availability analysis,” Software & Systems
Modeling, pp. 1–29, 2013.

[15] Galster, M. and P. Avgeriou, “Empirically-grounded reference
architectures: a proposal,” in Proceedings of the joint ACM SIGSOFT
conference–QoSA and ACM SIGSOFT symposium–ISARCS on Quality
of software architectures–QoSA and architecting critical systems–
ISARCS. ACM, pp. 153–158, 2011.

[16] Gonzalez-Perez, C. and B. Henderson-Sellers, “A powertype-based
metamodelling framework,” Software & Systems Modeling, vol. 5, no.
1, pp. 72–90, 2006.

2349

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

[17] Hevner, A. R., S. T. March, J. Park and S. Ram, “Design science in
information systems research,” MIS Quarterly, vol. 28, no. 1, pp. pp.
75–105, 2004.

[18] Holm, H., M. Buschle, R. Lagerstro¨m and M. Ekstedt, “Automatic
data collection for enterprise architecture models,” Software & Systems
Modeling, vol. 13, no. 2, pp. 825–841, 2014.

[19] Holm, H., K. Shahzad, M. Buschle and M. Ekstedt, “P2CySeMoL:
Predictive, probabilistic cyber security modeling language,” Computer
and Information Science, 2014.

[20] International Data Corporation, “Enterprise architecture: Strategic
architecture for the 3rd platform,” Retrieved 1/10/2016 World Wide
Web, http://www.idc.com/getdoc.jsp?containerId=251163

[21] Irlbeck, M., D. Bytschkow, G. Hackenberg and V. Koutsoumpas,
“Towards a bottom-up development of reference architectures for smart
energy systems,” in Software Engineering Challenges for the Smart
Grid (SE4SG), 2013 2nd International Workshop on. IEEE, pp. 9–16,
2013.

[22] Johnson, P., R. Lagerström, P. Närman and M. Simonsson, “Enterprise
architecture analysis with extended influence diagrams,” Information
Systems Frontiers, vol. 9, no. 2-3, pp. 163–180, 2007.

[23] Johnson, P., R. Lagerström, M. Ekstedt and M. Ö sterlind, IT
Management with Enterprise Architecture. Stockholm, Sweden: KTH
Royal Institute of Technology, 2012.

[24] Johnson, P., J. Ullberg, M. Buschle, U. Franke and K. Shahzad,
“P2AMF: Predictive, probabilistic architecture modeling framework,”
in Enterprise Interoperability. Springer, pp. 104–117, 2013.

[25] Johnson, P., J. Ullberg, M. Buschle, U. Franke and K. Shahzad, “An
architecture modeling framework for probabilistic prediction,”
Information Systems and e-Business Management, pp. 1–28, 2014.

[26] KTH, Industrial Information and Control Systems, “Multi-Attribute
Prediction (MAP) class diagram,” Retrieved 1/10/2016 World Wide
Web,
https://www.kth.se/en/ees/omskolan/organisation/avdelningar/ics/resear
ch/sa/the-multi- attribute-prediction-map-class-diagram-1.387306

[27] Lagerström, R., U. Franke, P. Johnson and J. Ullberg, “A method for
creating enterprise architecture metamodels–applied to systems
modifiability analysis,” International Journal of Computer Science and
Applications, vol. 6, no. 5, pp. 89–120, 2009.

[28] Lagerström, R., P. Johnson and D. Höök, “Architecture analysis of
enterprise systems modifiability–models, analysis, and validation,”
Journal of Systems and Software, vol. 83, no. 8, pp. 1387–1403, 2010.

[29] Lagerström, R., T. Sommestad, M. Buschle and M. Ekstedt,
“Enterprise architecture management’s impact on information
technology success,” in System Sciences (HICSS), 2011 44th Hawaii
International Conference on. IEEE, pp. 1–10, 2011.

[30] Lagerström, R., C. Baldwin, A. MacCormack and D. Dreyfus,
“Visualizing and measuring enterprise architecture: An exploratory
biopharma case.” Springer, 2013.

[31] Lankhorst, M.; Enterprise architecture at work: Modelling,
communication and analysis. Springer, 2013.

[32] Liu, F., J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger and D. Leaf,
“NIST cloud computing reference architecture,” NIST special
publication, vol. 500, p. 292, 2011.

[33] MacCormack, A., R. Lagerström and C. Y. Baldwin, “A methodology
for operationalizing enterprise architecture and evaluating enterprise IT
flexibility,” Harvard Business School Finance Working Paper, pp. 15–
60, 2015.

[34] Martinez-Fernandez, S., C. Ayala, X. Franch and H. M. Marques,
“Artifacts of software reference architectures: A case study.” EASE,
2014.

[35] Milch, B., B. Marthi, S. Russell, D. Sontag, D. L. Ong and A. Kolobov,
“1 blog: Probabilistic models with unknown objects,” Statistical
relational learning, p. 373, 2007.

[36] Nakagawa, E. Y., F. Oquendo and M. Becker, “Ramodel: A reference
model for reference architectures,” in Software Architecture (WICSA)
and European Conference on Software Architecture (ECSA), 2012
Joint Working IEEE/IFIP Conference on. IEEE, pp. 297–301, 2012.

[37] Närman, P., P. Johnson, R. Lagerström, U. Franke and M. Ekstedt,
“Data collection prioritization for system quality analysis,” Electronic
Notes in Theoretical Computer Science, vol. 233, pp. 29–42, 2009.

[38] Object Management Group, “Unified modeling language (UML),”
Retrieved 1/10/2016 World Wide Web, http://www.omg.org/spec/
UML/2.4.1/

[39] Object Management Group, “Object Constraint Language (OCL),”
Retrieved 1/10/2016 World Wide Web,
http://www.omg.org/spec/OCL/2.4/

[40] Object Management Group. “Meta Object Facility (MOF),” Retrieved
1/10/2016 World Wide Web, http://www.omg.org/spec/MOF/2.4.2/

[41] Open Group, “ArchiMate 2.0 Specification, Technical Standard,”
Reading, UK: The Open Group, Retrieved 1/10/2016 World Wide
Web, http://www.opengroup.org/archimate/

[42] Open Networking Foundation, “Software-defined networking: The new
norm for networks,” Retrieved 1/10/2016 World Wide Web,
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf

[43] Pidd, M., “Reusing simulation components: simulation software and
model reuse: a polemic,” in Proceedings of the 34th conference on
Winter simulation: exploring new frontiers. Winter Simulation
Conference, pp. 772–775, 2002.

[44] Robinson, S., R. E. Nance, R. J. Paul, M. Pidd and S. J. Taylor,
“Simulation model reuse: definitions, benefits and obstacles,”
Simulation modelling practice and theory, vol. 12, no. 7, pp. 479–494,
2004.

[45] Sheyner, O., J. Haines, S. Jha, R. Lippmann and J. M. Wing,
“Automated generation and analysis of attack graphs,” in Security and
privacy, 2002. Proceedings. 2002 IEEE Symposium on. IEEE, pp. 273–
284, 2002.

[46] Sommestad, T., M. Ekstedt and H. Holm, “The cyber security modeling
language: A tool for assessing the vulnerability of enterprise system
architectures,” Systems Journal, IEEE, vol. 7, no. 3, pp. 363–373, Sept
2013.

[47] Sprinkle, J., B. Rumpe, H. Vangheluwe and G. Karsai,
“Metamodelling: State of the art and research challenges,” in Model-
Based Engineering of Embedded Real-Time Systems. Springer, pp. 57–
76, 2011.

[48] Ullberg, J., P. Johnson and M. Buschle, “A language for
interoperability modeling and prediction,” Computers in Industry, vol.
63, no. 8, pp. 766–774, 2012.

[49] Välja, M., R. Lagerström, M. Ekstedt and M. Korman, “A requirements
based approach for automating enterprise it architecture modeling using
multiple data sources,” in Enterprise Distributed Object Computing
Workshop (EDOCW), 2015 IEEE 19th International. IEEE, pp. 79–87,
2015.

2350

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

