
Product Feature Prioritization Using the Hidden Structure Method:
A Practical Case at Ericsson

Robert Lagerström1, Mattin Addibpour2, Franz Heiser2
1KTH Royal Institute of Technology, Stockholm, Sweden

2Ericsson AB, Stockholm, Sweden

Abstract--In this paper, we present a case were we employ
the Hidden Structure method to product feature prioritization
at Ericsson. The method extends the more common Design
Structure Matrix (DSM) approach that has been used in
technology management (e.g. project management and systems
engineering) for quite some time in order to model complex
systems and processes. The hidden structure method focuses on
analyzing a DSM based on coupling and modularity theory, and
it has been used in a number of software architecture and
software portfolio cases. In previous work by the authors the
method was tested on organization transformation at Ericsson,
however this is the first time it has been employed in the domain
of product feature prioritization. Today, at Ericsson, features
are prioritized based on a business case approach where each
feature is handled isolated from other features and the main
focus is customer or market-based requirements. By employing
the hidden structure method we show that features are heavily
dependent on each other in a complex network, thus they should
not be treated as isolated islands. These dependencies need to be
considered when prioritizing features in order to save time and
money, as well as increase end customer satisfaction.

I. INTRODUCTION

Today, at Ericsson, features are prioritized based on a
business case approach where each feature is handled
isolated from other features and the main focus is customer or
market-based requirements. In reality the dependency
relations between features are far more complicated than the
immediate business view. The development of features is not
done in isolation, and many aspects are common and reused.
In large-scale software development organizations, parallel
development of features needs to be planned carefully taking
into consideration the indirect feature dependencies through
development dimensions, e.g. design base, organizational,
and infrastructure. Although the legacy and code design base
dependencies are somewhat included in the analysis, a more
elaborated dependency analysis for optimizing the usage of
development dimensions and maximizing parallel
development needs to be explored. Many of these
dependencies are not visible using the methods currently in
place at Ericsson, which focus only on direct dependencies
(first order dependencies) and not indirect dependencies that
often matter too [2][16].

For analyzing the direct and indirect dependencies
between product features we have applied an evolution of
Design Structure Matrices (DSMs) called “Hidden Structure”
[2], a methodology previously used for analysis of large
software products like Linux, Mozilla, Apache, and GnuCash

[2] or application portfolios [11][12] and enterprise
architecture [9]. In an earlier paper, we applied the hidden
structure methodology to organizational transformation [7].
In this paper we use the methodology for software feature
prioritization.

By employing the hidden structure method we explore a
methodology that reveals the hidden dependencies between
features in a complex network. The patterns revealed in this
paper, help the process of prioritization and planning, by
categorizing features into four different types that require
different planning strategies, e.g. features that should be
planned together, those that can be developed in parallel and
so forth. These dependencies need to be considered when
prioritizing features in order to optimize the usage of
common resources, as well as increase end customer
satisfaction by making well-informed decisions in a
structured way.

We show that in our practical case at Ericsson the
visualization of the patterns that the hidden structure method
provides, can be used to redefine the priority of the features
to make an optimal feature planning strategy. Beside a more
elaborated feature grouping and prioritization, several
additional improvement potentials are revealed as a result of
our analysis, such as; test case planning, delivery strategy,
and smart team allocation. To facilitate the permanent
process of planning features, we have realized a tool called
ADP (Advanced DSM Processing) that supports all the
needed steps to calculate and describe the hidden patterns.
ADP is intented to be described in a later publication.

The paper unfolds as follows: chapter 2 presents related
work and chapter 3 the hidden structure method. In chapter 4
our case is described together with its results and a
discussion. Future work is outlined in chapter 5. And finally,
chapter 6 concludes the paper.

II. RELATED WORK

Design Structure Matrices (DSMs) [4][14][18][21] has

been used for some time to model and analyze complex
systems incl. software architecture, mechanical systems,
physical systems, and organizations [3]. Eppinger and
Browning [3] presents four different types of DSMs, namely;
1) product architecture, 2) organization architecture, 3)
process architecture, and 4) multi-domain. The case
presented in this paper mainly falls into category 1, product
architecture. Further, they list that the main benefits with
using DSMs for system architecture modeling are;

2308

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

conciseness, visualization, intuitive understanding, analysis,
and flexibility.

As an evolution of DSMs Baldwin et al. [2] developed a
method to visualize the hidden structure of software
architectures based classic coupling measures. This method
has been tested on numerous software products, such as
Linux, Mozilla, Apache, and GnuCash. In one study by
MacCormack et al. [15] an early version of this hidden
structure method was employed to show the relation between
the product architecture and its development organization.
Others have used the DSM approach and also hidden
structure-based metrics for various purposes [13][17][22].

Recently the fields of enterprise architecture [23] and
software portfolio management started to test the hidden
structure method with the aim to visualize and measure these
types of systems. In [9] the hidden structure method was used
on a Biopharmaceutical case to reveal the hidden
dependencies in its enterprise architecture incl. business
groups, software applications, databases, schemas etc. Data
from this case was then used to show that the cost of
changing applications with many indirect dependencies
(metrics derived using the DSM based hidden structure
method) was more expensive than applications with few
[10][16]. Also in [11] the authors employed the hidden
structure method on application portfolio data from a
Telecommunication case and in [12] from a power utility
case. Another very highly related study using the hidden
structure method is the one presented in [7], where the
authors employed the method in order to reveal hidden
structures in organizational transformation using a case at
Swedish telecom company Ericsson.

All in all these case studies build up a story of interesting
application areas for DSMs and hidden structure. However,
the focus in the hidden structure papers have either been on
software code bases or enterprise application portfolios. In
this paper we instead aim to make practical use of the DSM
approach using the hidden structure method for software
product feature prioritization. It is thus a new application area
for the method.

III. HIDDEN STRUCTURE

The method we use for representing software product

features and their interactions is based on and extends the
classic notion of coupling [5][6][8][20] and modularity
[1][19]. Specifically, after identifying the dependencies
(coupling) between the features, we analyze them as a system
in terms of hierarchical ordering and cyclic groups, and
classify features in terms of their position in the resulting
network/system (this method is more thoroughly described in
[2].

In a Design Structure Matrix (DSM), each diagonal cell
represents an element/node (for us here a feature), and the
off-diagonal cells record the dependencies between the
elements (links): If element i depends on element j, a mark is

placed in the row of i and the column of j. The content of the
matrix does not depend on the ordering of the rows and
columns, but different orderings can reveal (or obscure) the
underlying structure. Specifically, the elements in the DSM
can be arranged in a way that reflects hierarchy, and, if this is
done, dependencies that remain above the main diagonal will
indicate the presence of cyclic interdependencies (A depends
on B, and B depends on A). The rearranged DSM can thus
reveal significant facts about the underlying structure of the
architecture that cannot be inferred from standard measures
of coupling. In the following subsections, a method that
makes this “hidden structure” visible is presented.

A. Identify the Direct Dependencies and Compute the

Visibility Matrix
Any complex system can be represented as a directed

graph composed of N elements (nodes) and directed
dependencies (links) between them. This directed graph can
be represented as a DSM. If the DSM is raised to successive
powers, the result will show the direct and indirect
dependencies that exist for successive path lengths. Summing
these matrices yields the visibility matrix V (or VSM), the far
right matrix in Fig. 1, which denotes the dependencies that
exist for all possible path lengths. The values in the visibility
matrix are constrained to be binary, capturing only whether a
dependency exists and not the number of possible paths that
the dependency can take [14]. The matrix for n=0 (i.e., a path
length of zero) is included when calculating the visibility
matrix, implying that a change to an element will always
affect itself.

Fig. 1. A directed graph with the corresponding DSM and VSM.

Several measures are constructed based on the VSM.

First, for each element i in the architecture, the following are
defined:
 VFIi (Visibility Fan-In) is the number of elements that

directly or indirectly depend on i. This is found by
summing entries in the ith column of V.

 VFOi (Visibility Fan-Out) is the number of elements that i
directly or indirectly depends on. This is found by
summing entries in the ith row of V.

In Fig. 1, element A has a VFI equal to 1, meaning that no

other elements depend on it, and a VFO equal to 6, meaning
that it depends on all other elements in the architecture. To
measure visibility at the system level, Propagation Cost (PC)

2309

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

is defined as the density of the VSM. Intuitively, propagation
cost equals the fraction of the architecture that may be
affected when a change is made to a randomly selected
element.

B. Identify and Rank Cyclic Groups

The next step is to find the cyclic groups in the system.
By definition, each element within a cyclic group depends
directly or indirectly on every other member of the group.
First, the elements are sorted, first by VFI descending and
then by VFO ascending. Next one proceeds through the
sorted list to find different cyclic groups. These groups are
referred to as the “cores” of the system. The largest cyclic
group is defined as the “Core”. Once the Core is identified,
the other components in the architecture can be classified into
groups, as follows:
 “Core” elements are members of the largest cyclic group

and have the same VFI and VFO, denoted by VFIC and
VFOC, respectively.

 “Control” elements have VFI < VFIC and VFO ≥ VFOC.
 “Shared” elements have VFI ≥ VFIC and VFO < VFOC.
 “Periphery” elements have VFI < VFIC and VFO < VFOC.

Using the above classification scheme, a reorganized
DSM can be constructed that reveals the “hidden structure”
of the system by placing elements in the order Shared, Core,
Periphery, and Control down the main diagonal of the DSM,
and then sorting within each group by VFI descending and
then VFO ascending (cf. Fig. 3 for an example of a hidden
structure sorted DSM).

The method for classifying systems into different types of
architectures is discussed in empirical work by Baldwin et al.
in [2]. Specifically, the authors find a large percentage of the
systems they analyzed contained a large cyclic group of
components that was dominant in two senses: i) it was large
relative to the number of elements in the system, and ii) it
was substantially larger than any other cyclic group. This
architectural type is classified as “core-periphery.” Where
architectures have multiple cyclic groups of similar size, the
architecture is referred to as “Multi-Core”. Finally, if the
Core is small, relative to the system as a whole, the
architecture is referred to as “Hierarchical.”

IV. CASE

In this section we describe how the Hidden Structure
method, an evolution of the Design Structure Matrix (DSM)
approach, was applied to a case at Ericsson AB in order to
reveal unknown structures between software product
features.

The main focus in this paper is the interaction between a
number of software (SW) features to be implemented in LTE
Radio Access Networks delivered by Ericsson, owned by
Mobile Operators like e.g. AT&T in the US or CMCC in
China. The SW features are intended to increase the user

experience, network capacity, and/or the network
performance of mobile terminals (UE) in a Radio Access
Network consisting of numerous Radio Base Stations (RBS),
deployed in-house or outdoors. The Radio Base Stations can
serve GSM, WCDMA or LTE Access Technologies. We
focus on LTE features with emphasis on Mobile Broadband
(MBB). MBB is a term describing the overall categorization
of services available for UEs. Mobile Broadband services can
include e.g.;
 Voice over LTE (VoLTE),
 File downloads,
 HTTP(S) sessions like Youtube, etc.,
 Broadcast services, and
 APP downloads.

Examples for improvements of user experience are:
 Increase of the achievable UE download speed.
 Better VoLTE coverage at cell edges.
 Better VoLTE quality and less experience of latency to

the UE of a mobile subscriber.
 Less buffering time for Youtube sessions until video start.
 Higher resolution for Youtube video sessions.

Examples for Radio Network Performance & Capacity are:
 More VoLTE users per cell, RBS in a whole network.
 More simultaneous video downloads at high resolution.
 Increased number of Broadcast channels available for

mobile subscribers in a Radio Network.

Improvements of user experience, network performance,
and/or network capacity are broken down into SW features,
which the SW design teams then are implementing.

The delivery of SW features is planned for six month
Main Release Periods. A Year is split into an “A” and “B”
release, e.g. L14A, L14B, L15B. The “L” stands for LTE,
“A” Release is before “B” release, i.e. L14A is delivered to
customers before L14B release. During the analysis we have
looked at three different areas with two different releases in
each, however for this paper we have selected a release for
Mobile Broadband (MBB) features delivered during 2015 in
the “B” release (L15B). In this release a number of SW
features were realized. Examples for features analyzed in this
paper are:
 Carrier aggregation between FDD and TDD.
 Downlink Carrier Aggregation across multiple

frequencies.
 Quad antenna configurations in RBS.
 Coordinated scheduling and link adaptation in an RBS.
 Increased number of cells per RBS.

We are not revealing further details of the features, as this
additional information is not needed for the understanding
and the conclusions drawn from our analysis. A total of 52
MBB SW features are included in the analysis of this paper.

2310

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

A Release also contains features in other areas. The features
of other areas only have minor interactions with the features
analyzed in this paper, therefore they are not included here.

Not all 52 examined features are intended for the L15B
release, 32 were intended for the L15B release, 20 features
were delivered in an earlier release.

The feature dependencies are input to the DSM as shown
below in Fig. 2.

A feature interaction can be classified into three areas;
1. Functional Dependency,
2. Interaction Dependency, and
3. Code Proximity/Resource Dependency.

A functional dependency is shown if the two features are
functionally connected. Interaction dependency is shown if
the features interact with each other, e.g. that only one can be
enabled at a time, or both need to be enabled at the same
time. Code proximity/Resource Dependency is shown if the
features affect the same HW resource or require code
changes in the same SW unit or file.

The reason why we also include previous features in our
analysis is mainly because new features are not only

depending on other new features, but also on legacy features
via the same above described feature interaction classes.

Although the 32 features are part of the L15B Release,
they are individually prioritized among all features intended
for the release. The prioritization process is strictly business
oriented, i.e. the feature with best business case has highest
ranking. The ranking is indicated by an increasing number,
whereof increasing number means less priority and the lowest
number thus has highest priority. Each feature has a
corresponding priority number. Priority numbers for MM
L15B release are not strictly sequential due to Ericsson
internal reasons. Earlier features have therefore no priority
number in the 15B release analysis, as they have been already
implemented.

A. Input Data

Each MBB SW feature is indicated by a feature number
(1-52). Fig. 2 below shows the input for the first order feature
dependency matrix (the input DSM). Features 1-32 below are
the 15B features, features 33-52 are legacy features,
implemented in earlier releases.

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

1 X X

2 X X X X X X X

3 X X X X X X X X

4 X X X

5 X

6 X X X X X X

7 X X X X X X X X X

8 X X X X X X X X

9 X X X X

10 X

11 X X X X X X X X X X X X X X X

12 X X X X X X X X X X X X X X X X X X

13 X X X X X X X X X X X X X X X X X X X X X X X

14 X X X X X X X X X X X X X X X X X X X X X X X X

15 X X X X X X X X

16 X X X X X X X

17 X X X X X X X X X X X X X X

18 X X X X X X X X X X X X X X

19 X X X X X X

20 X X X X X X X X X X X X X X

21 X X X X X X X X X X X X

22 X

23 X X X X X

24 X X X X X X X X X X X X

25 X X X X X X X X X

26 X X

27 X X

28 X

29 X

30 X

31 X

32 X

33 X

34 X

35 X

36 X

37 X

38 X

39 X

40 X

41 X

42 X

43 X

44 X

45 X

46 X

47 X

48 X

49 X

50 X

51 X

52 X X X

Fig. 2. "MBB_L15B" input DSM.

2311

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

B. Problem Description
Feature dependencies in first order have been used at

Ericsson for quite some time. The reason for this is that
feature dependencies can help understand on beforehand the
following problem areas:
 Feature teams destroy each other’s code changes.
 Features already delivered to customers suddenly stopped

working.
 Wrong planning due to missing understanding and

consequences of feature dependencies.
 Inappropriate test setups which were missing feature

dependency, resulting in bad quality.
 Late started features destroyed code base of earlier started

features, on the way delivered to customers.

Although feature interaction tables were created, the
above problems improved, but did not really disappear.
Several reasons might be possible, like e.g.:

 Not all feature dependencies were included, hidden
dependencies might be important.

 Features are started in wrong order, not reflecting
the dependency direction between them.

 Corrections for Trouble Reports (TR) from
operators on legacy features might affect new
features.

 Large features with many dependencies
implemented by feature teams, not capable to
communicate their changes to other teams
implementing dependent features.

The hidden structure method as outlined in chapter 3 is
used in order to help reveal reasons causing some of these
problems.

C. Use of the Method and Results
Fig. 3 shows the DSM sorted according to the Hidden

Structure method. The analysis revealed a Core-Periphery
architecture. The cyclic groups are placed along the diagonal
from top left to bottom right in the usual order; Shared, Core,
Periphery, and Control.

Shared Group:
The Shared group contains only legacy features except

feature no 5, which is a common feature across not only
MBB but also other areas. Interestingly it is also in the shared
group in the MBB feature set. Legacy features experience
corrections and changes due to Trouble Reports (TR) from
operators. The Priority is not MBB Controlled. TR’s in these
features might destroy baseline/legacy for Core / Control
Group features. TR correction & feature implementation
needs highest prio/earliest delivery time (from MBB
perspective).

Core Group:
We found that feature priority is rather low in average

(high prio numbers). TR’s in these features might destroy
baseline/legacy for features belonging to the cyclic group for
control.

Periphery Group:
This group can be seen as a “plan-as-you-like-when-it-

fits” group. Many features in this group can increase
planning flexibility. Unfortunatelly only a small amount of
features (8) belong to this group.

Control Group:

Business priority is rather high in average (low prio
numbers). TR’s or new code from Core Group having mainly
low business priority very likely to destroy already performed
verification in this group with high business priority.

Item 35 46 50 5 28 30 31 32 33 34 36 37 38 39 40 41 42 43 47 48 49 51 52 2 6 8 11 12 13 14 15 16 17 18 20 23 24 25 29 10 22 44 45 26 27 9 1 3 4 7 19 21
35 X
46 X
50 X
5 X

28 X
30 X
31 X
32 X
33 X
34 X
36 X
37 X
38 X
39 X
40 X
41 X
42 X
43 X
47 X
48 X
49 X
51 X
52 X
2 X X X X X X X
6 X X X X X X
8 X X X X X X X X
11 X X X X X X X X X X X X X X X
12 X X X X X X X X X X X X X X X X X X
13 X
14 X
15 X X X X X X X X
16 X X X X X X X
17 X X X X X X X X X X X X X X
18 X X X X X X X X X X X X X X
20 X X X X X X X X X X X X X X
23 X X X X X
24 X X X X X X X X X X X X
25 X X X X X X X X X
29 X
10 X
22 X
44 X
45 X
26 X X
27 X X
9 X X X X
1 X X
3 X X X X X X X X
4 X X X
7 X X X X X X X X X

19 X X X X X X
21 X X X X X X X X X X X X

Shared
High Fan‐In. Low Fan‐Out.
Not dependent on the
others, but Core and
Control depend on Shared.

Core
High Fan‐In. High Fan‐Out.
Core depend on all the
others in the Core.

Periphery
Low Fan‐In. Low Fan‐Out.
More or less independent
of all the others.

Control
Low Fan‐In. High Fan‐Out.
Dependent on all the others
(except the Periphery).

Fig. 3. "MBB_L15B" restructured DSM based on the hidden structure classification.

2312

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

D. Interpretation
Fig. 3 was input to an analysis of the prioritization

between cyclic groups. As mentioned earlier, Peripheral
features can be planned independently due to their
independence of all the others. Therefore this group is not
visible in the analysis about prioritization.

Table 1 shows the priority numbers for individual features
in the different cyclic groups.

TABLE 1. PRIORITY NUMBERS FOR INDIVIDUAL FEATURES IN
THE DIFFERENT CYCLIC GROUPS.

Feature Priority Number

Shared Control Core

31 22 28

29 32

30 34

33 37

45 38

47 39

40

41

42

43

44

46

49
50
52

One feature in L15B is categorized as Shared and had

priority number 31. Median and Mean of the priority number
of the Control Group is 33 and 34, respectively. For the Core
Group the Median and Mean priority values are both 41. This
means that Core features are lying approximately 7-8 priority
numbers above Core. This seems very low, but if we look on
a bar chart showing the distribution, then the difference
between the groups becomes more evident, see Fig. 4.

Fig. 4. Priority number of features in Shared, Control, and Core groups.

The following can be derived from Fig 4:
 Only two out of six Control features have a very high

priority number, i.e. low priority. Four Control feature
have very high priority, i.e. very low priority numbers.

 13 out of 15 Core features have lower priority than the 4
Core features with highest priority.

 The Shared feature in L15B has the same priority as the
Control features.

Control Group features have highest business value and

are therefore highly prioritized, started early, and verified
early. Control group features are dependent on Core and
Shared group features; implementing high priority features in
the Control group therefore results in an early start of Control
group features. Later addition of Shared and Core group
features destroy stability and invalidate the earlier already
done testing efforts.

By doing this, the high priority features are at most risk to
get broken, when the SW updates including late additions of
low priority content are designed and delivered. Trouble
reports from field changing the Shared cyclic group might
impact the Control featureas also in a negative way. The
correction of a Trouble Report (TR) from previous releases
will create new TRs in the Control group features due to their
dependencies to features in the Shared group.

In order to avoid the risk that Control features are broken,
when Core and Shared feature are started or due to TRs
changing the Shared group, a number of countermeasures can
be considered:
 Shared and Core group features and TRs must be finished

and verified before Control group features can be
delivered and verified.
o If not done: Unpredictable baseline for Control group

features, which have highest business priority and
highest customer focus.

 Every new feature and TR correction in the Shared group
should be coordinated with Core and Control group
features for impact analysis.
o If not done: Unpredictable baseline for all Core and

Control features.
 Fast TR correction time with high priority for features in

Shared group.
o If not done: Instable baseline for all Core and Control

features.

Other possible considerations:
 Wrong order / priority can make it impossible to deliver

high priority features in Control group with acceptable
quality with an inherent risk for customer escalations.

 As Control group features are dependent on all other
features, root causes for Control group TRs are almost
impossible to find with reasonable effort if Shared and
Core features are unstable or badly verified.

2313

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

E. Discussion
We have shown that DSM analysis with the Hidden

Structure method can be used to impact the priority of SW
features. Careful planning with the right prioritization of the
cyclic groups is essential to prohibit the problems as outlined
in the problem description above. Shared features/TRs should
have highest priority, followed by Core group features
having second highest priority, and then the Control group
features. Periphery features can be planned independently.

Besides the prioritization between features, several
additional improvements in SW design can be seen for each
cyclic feature group. We describe such ideas only briefly
here:
 Feature dependencies should be considered in test case

analysis, test case implementation, and test case
execution.

 Feature dependencies should be identified as early as
possible in the development phases (system design
phase), to have an early version of the DSM as input to
later phases.

 Feature dependencies should steer the delivery strategy,
both internally and externally to customers.

 Relate team competence to cyclic groups.
o Shared feature teams should have high communication

skills in order to communicate changes to dependent
Core and Control features.

o Core feature teams should be highly competent to
collaborate.

o Control feature teams should be highly competent to
find “others” mistakes.

Other improvement possibilities, sorted per cyclic group

is also possible like e.g.:
Peripheral features:
 Reduce test case scope for legacy testing compared to

other cyclic feature groups, due to the limited number of
dependencies.

 Assess the possibility to skip legacy testing completely for
this group.

Shared features:
 Define higher quality levels to be achieved before a

shared feature/TR can be delivered internally or externally
to customer, minimizing the risk for broken Core or
Control features.

Core features:
 Think and enable smart testing by coordinated testing in

order to take advantage of the common dependency
structure.

 Use the same team for several features to speedup startup
time, as the dependencies within the Core feature group
are identical.

 Re-use test environment within the group, take advantage
of the dependency structure.

 For late Core features - an improved test analysis is
needed due to Control feature dependencies. The creation
of support teams to help Core feature teams not to break
Control features will improve SW quality.

Control features:
 For early Control features - differentiate the interaction

with Shared and Core features, make the dependencies
visible to all feature teams that the Control features are
dependent on.

As the planning of features is a permanent process, it is

important that the DSM created and the Hidden Structure
analyzed in very timely manner. We have therefore realized a
tool for DSM analysis using the hidden dependency method.
The tool is able to import several input formats for the DSM
and then run the Hidden Structure method within seconds.
The tool can also compare different versions of a DSM and
VSM, and changes can be highlighted for impact analysis.
The tool is called ADP (Advanced DSM Processing) and will
be described in a later publication.

V. FUTURE WORK

In this paper we present a case for feature dependencies
analysis based on function and interaction dependencies
between Ericsson software features, including the
dependencies originating from the code base. It would be
very interesting to also include other development
dimensions such as organization, processes, and development
artifacts (e.g. tools, production related code, information, and
machines) in the analysis. We are currently experimenting
with so called multi-domain hidden structure analysis that
will pave the way for a more advanced analysis of feature
dependencies. The main challenge here is to “normalize” the
values and priorities between different artifact types, since
the type of relations in each domain has certain semantics
that make perfect sense within a domain, but could be
difficult to interpret between different domains.

In our model all dependencies are binary; this results in a
somewhat worst-case analysis and not a weighted or most
probable one. In order to make the analysis more precise the
dependencies between the elements could be weighted. A
weighted approach can be even more complex if it is applied
in a multi-domain case. Another interesting approach is to
consider N-1 order dependencies in relation to the Nth-order
(as currently used in the Hidden Structure method), since the
dependency relations tend to become weaker and less
probable for each step closer to N.

By continuous development of our analysis tool (called
ADP), we find it very easy to apply the methodology to
different domains and applications at Ericsson AB. We
continuously find new areas where the method is applicable.

2314

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

On such new area we are currently experimenting with is
a value-based analysis of improvement proposals. The idea is
to apply the methodology in order to select the best
improvement proposals out of many suggested, by analyzing
the dependencies between them and maximizing the
delivered value. We consider this approach as a complement
to the currently used business case analysis. Another area we
intend to explore is to help proposing simplified first order
dependencies in our software structure by reducing the total
numner of hidden dependencies (i.e. propagation cost) in the
hidden structure (i.e. VSM).

VI. CONCLUSIONS

In this paper we test the Hidden Structure method, a

dependency analysis approach based on Design Structure
Matrix (DSM) input, on a software feature prioritization case
at Ericsson. The method provides valuable input to the
feature prioritization strategy and acts as a complement to the
business case analysis currently setting the implemention
order of features. The different business groups testing the
method at Ericsson all agree that the approach works great
for this application domain (software feature dependency
analysis). It provides valuable information currently being
missed in the analysis. People found it intuitive to work with
and the tool support developed within Ericsson helped
spreading the method to a larger internal audience.

REFERENCES

[1] Baldwin, C. and K. Clark, Design Rules - Volume 1: The Power of

Modularity. MIT Press, 2000.
[2] Baldwin, C., A. MacCormack and J. Rusnak, “Hidden structure: Using

network methods to map system architecture,” Research Policy, vol.
43, no. 8, pp. 1381-1397, 2014.

[3] Eppinger, S. and T. Browning, Design Structure Matrix Methods and
Applications. The MIT Press, Cambridge MA, 2012.

[4] Eppinger, S. D., D. E. Whitney, R. P. Smith and D. A. Gebala, “A
model-based method for organizing tasks in product development,”
Research in Engineering Design, vol. 6, no. 1, pp. 1-13, 1994.

[5] Fenton, N. and A. Melton, “Deriving structurally based software
measures,” Journal of Systems and Software, vol. 12, no. 3, pp. 177–
187, 1990.

[6] Hall, N. R. and S. Preiser, “Combined network complexity measures,”
IBM journal of research and development, vol. 28, no. 1, pp. 15-27,
1984.

[7] Heiser, F., R. Lagerström and M. Addibpour, “Revealing hidden
structures in organizational transformation: A case study,” in Trends in
Enterprise Architecture Research (TEAR) workshop, Springer, 2015.

[8] Henry, S. and D. Kafura, “Software structure metrics based on
information flow,” IEEE Transactions on Software Engineering, vol. 5,
pp. 510-518, 1981.

[9] Lagerström, R., C. Baldwin, A. MacCormack and D. Dreyfus,
“Visualizing and measuring enterprise architecture: An exploratory
BioPharma case,” in the 6th IFIP WG 8.1 Working Conference on the
Practice of Enterprise Modeling (PoEM), Springer, 2013.

[10] Lagerström, R., C. Baldwin, A. MacCormack and D. Dreyfus,
“Visualizing and measuring software portfolio architecture: A
flexibility analysis,” in the 16th International Dependency and Structure
Modelling (DSM) conference, 2014.

[11] Lagerström, R., C. Baldwin, A. MacCormack and S. Aier, “Visualizing
and measuring enterprise application architecture: An exploratory
Telecom case,” in the 47th Hawaii International Conference on System
Sciences (HICSS), pp. 3847-3856, IEEE, 2014.

[12] Lagerström, R., C. Baldwin and A. MacCormack, “Visualizing and
measuring software portfolio architecture: A Power Utility case,”
Journal of Modern Project Management, vol. 03, no. 02, 2015.

[13] LaMantia, M., Y. Cai, A. MacCormack and J. Rusnak, “Analyzing the
evolution of large-scale software systems using design structure
matrices and design rule theory: Two exploratory cases,” in the 7th
Working IEEE/IFIP Conference on Software Architectures (WICSA7),
2008.

[14] MacCormack, A.; “The architecture of complex systems: Do “core-
periphery" structures dominate?,” in Academy of Management, 2010.

[15] MacCormack, A., C. Baldwin and J. Rusnak, “Exploring the duality
between product and organizational architectures: A test of the
"mirroring" hypothesis,” Research Policy, vol. 41, no. 8, pp. 1309-
1324, 2012.

[16] MacCormack, A., R. Lagerström and C. Baldwin, “A methodology for
operationalizing enterprise architecture and evaluating enterprise IT
flexibility,” Harvard Business School Working Paper, no. 15-060,
2015.

[17] MacCormack, A., J. Rusnak and C. Baldwin, “Exploring the structure
of complex software designs: an empirical study of open source and
proprietary code,” Management Science, vol. 52, no. 7, pp. 1015–1030,
2006.

[18] Sosa, M., S. Eppinger and C. Rowles, “A network approach to define
modularity of components in complex products,” Transactions of the
ASME, vol. 129, pp. 1118-1129, 2007.

[19] Parnas, D. L.; “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053-
1058, 1972.

[20] Stevens, W. P., G. J. Myers and L. L. Constantine, “Structured design,”
IBM Systems Journal, vol. 13, no. 2, pp. 115–139, 1974.

[21] Steward, D.; “The design structure system: A method for managing the
design of complex systems,” IEEE Transactions on Engineering
Management, vol. 3, pp. 71-74, 1981.

[22] Sturtevant, D. J.; System design and the cost of architectural
complexity. Doctoral dissertation, Massachusetts Institute of
Technology (MIT), 2013.

[23] Vakkuri, E. T.; Developing Enterprise Architecture with the Design
Structure Matrix. Master Thesis. Tampere University of Technology,
Finland, 2013.

2315

2016 Proceedings of PICMET '16: Technology Management for Social Innovation

