Forecasting Innovation Pathways: Using Data on 'Big Data'

Alan Porter Georgia Tech <u>alan.porter@isye.gatech.edu</u>

And Search Technology, Inc.

Thanks to **Ying Huang, Jannik Schuehle, Jan Youtie, Jianhua Liu, Ying Quo & Doug Robinson** for key ideas and research. We acknowledge support from the US National Science Foundation (Award #1527370 – "Forecasting Innovation Pathways of Big Data & Analytics"). The findings and observations contained in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Agenda

- 1. My slanted view on Management of Technology (MOT) "intel"
- 2. Tech Mining: A classic case advanced ceramics
- 3. Forecasting Innovation Pathways (FIP): The case of data on "Big Data" (BD)
- 4. Message: Think empirically use those 'big' data (+ more)

PICMET Mission

- Portland International Conference on Management of Engineering & Technology
- Advance analyses of changing technologies to
- Inform Management of Technology (MOT)

Managing (other than 'technology'): On the Shop Floor

- 1. The font of knowledge: The machine operator's intuition (experience)
- 2. Role of data: Deming's Quality Control? [nonsense; see #1]
- 3. Action: Japan empirical data provides enhanced knowledge to manage production processes far better
- 4. Result: **Six Sigma** manufacturing world (contrast to hospital world)

Managing (other than 'technology'): Athletics

- 1. The font of knowledge: The old veteran coach/manager ~ intuition (experience)
- 2. Role of data: [nonsense; see #1]
- Action: Moneyball empirical data provide enhanced knowledge to get superior major league baseball players on a tight budget [Oakland A's quite successful]
- 4. One result -- NBA-2015/16 Golden State Warriors
 - Stats inform personnel decisions
 - Stats inform player combinations & matchups [~Big Data = "Advanced Scout reveals hidden patterns from play-by-play data]
 - Andre Iguodala first start after 82 regular season + 3 playoff series – in the 2015 finals
 - NBA champs (2015)
 [but, hey, you can't win 'em all!]

- 1. The font of knowledge in the US = personal judgment
 - scientists (peer review), or
 - engineers ~ collective experience, or
 - MOT managers ~ tacit knowledge
- 2. Role of data: [nonsense; see #1]
 - Scientometrics to inform R&D funding decisions? (in the US, request ear plugs)
- 3. Action: "Tech Mining" for **empirical intelligence** to complement expertise
- 4. Result → Better decisions!?

TechMining success story: Ceramics in Engines by Bob Watts (US Army) **PICMET Best Student Paper

- Overcoming Management Resistance
- Jumping Domains
- "Discovering" new technology

Informing a tough decision

- US Army Tank-Automotive Research, Development & Engineering Center
- Task in 1996: Reassess a "loser technology" could thin-film ceramics be used in tank engines?
- TechMining: R&D Profile -- Amount of activity up a little -- but clues of significant maturation (next slide)

Forecasting Innovation Pathways (FIP)

10 Steps (non-linear!) to Forecast Newly Emerging Science/Technology (NEST) Innovation Pathways

1. Understand the NEST and its TDS (Technology	Step A: Characterize the technology's nature
Delivery System)	Step B: Model the TDS
2. Tech Mine	Step C: Profile R&D
	Step D: Profile innovation actors & activities
	Step E: Determine potential applications
	Step J: Engage experts
3. Forecast likely innovation paths	Step F: Lay out alternative innovation pathways
	Step G: Explore innovation components
	Step H: Perform Technology Assessment
4. Synthesize & report	Step I: Synthesize and Report

Tech Mining for "Big Data" (BD)

Why study **BD**? To inform a potent Social Innovation

- US Government Accountability Office (GAO) doing a Technology Assessment of 21st Century Data
- > To inform the US Congress and stakeholders re:
 - Issues and opportunities
 - Potential legislation e.g., to protect privacy & security
 - · Potential incentives to promote commercial development
- NSF support for our Georgia Tech group to improve our "Forecasting Innovation Pathways" methodology, using BD case
 - · Interacted informally with GAO

Various Data on Big Data

Our initial focus is on R&D data:

- INSPEC, EI Compendex treat the strong computer science core
- Derwent Innovation Index patents
- Research awards NSF, NSFC

Web of Science – fundamental research; include conference proceedings [focus here]

- + Social Innovation facets:
 - Commercial activity (databases like ABI/Inform)
 - Databases like Lexis Nexis ~10,000
 - Popular attention
 - Google hits ~> 274 million (as of 7/31/2016)

Locating & Retrieving Data					
No	Search Strategy	Search Terms			
1	Core Lexical Query	TS= ("Big Data" or Bigdata or "Map Reduce" or MapReduce or Hadoop or Hbase or Nosql or Newsql)			
2 Expanded Lexical Query		TS=((Big Near/1 Data or Huge Near/1 Data) or "Massive Data" or "Data Lake" or "Massive Information" or "Huge Information" or "Big Information" or "Large-scale Data" or Petabyte or Exabyte or Zettabyte or "Semi- Structured Data" or "Semistructured Data" or "Unstructured Data") AND			
		TS=("Cloud Comput*" or "Data Min*" or "Analytic*" or "Privacy" or "Data Manag*" or "Social Media*" or "Machine Learning" or "Social Network*" or "Security" or "Twitter*" or "Predict*" or "Stream*" or "Architect*" or "Distributed Comput*" or "Business Intelligence" or "GPU" or "Innovat*" or "GIS" or "Real-Time" or "Sensor Network*" or "Smart Grid*" or "Complex Network*" or "Genomics" or "Parallel Comput*" or "Support Vector Machine" or "SVM" or "Distributed" or "Scalab*" or "Time Serie*" or "Data Science" or "Informatics*" or "OLAP")			
3	Specialized Journals	The papers published in these specialized journals are not indexed by WOS			
4	Cited References	The publications, which were cited more than 20 times did not fulfill the criteria for inclusion (see paragraph "Cited Reference Analysis")			

Author Organization	Records
Chinese Acad Sci	293
Tsinghua Univ	151
ВМ	101
Harvard Univ	95
МІТ	93
Beijing Univ Posts & Telecommun	90
Univ Calif Berkeley	87
Stanford Univ	86
Univ Illinois	86
Huazhong Univ Sci & Technol	85

Tech Mining of Big Data Research: Who? What? Where? When? → what to do??

- Amazing increase in research on BD 2011-2014
- BD research is dominated by two countries implications?
- Multidisciplinary attention, centered on computer science, but involving most R&D areas
- Social Innovation is a priority: sharp increases in social science analyses, patenting, commercial interest, and popular coverage

[4,300,000 hits in Google Scholar; 274,000,000 in Google]

- We are pursuing Social Innovation aspects:
 - technology delivery system (players & influences)
 - technology assessment

Exploring Big Data Social Innovation

Technology Assessment

- Likelihood X Magnitude impact screening
- Mitigation options
- Survey + open web opinion seeking
 [Jianhua Liu, Ying Guo, et al. PICMET paper]

GAO "21st Century Data" TA study ongoing

Big Data Social Innovation Scenario Analyses

Key on application variations

- Morphological strategy:
 - List factors
 - Identify alternatives for each
 - Package driven by applications (real + potential)
- Construct ~ 15-20 diverse application scenarios
 - Present via blog or such to elicit feedback (elaboration, correction, addition)
 - Of various stakeholders
- Scan for
 - Sensitivities factors (states) affecting multiple development paths
 - Opportunities
 - Emergent issues

Morphological Structuring for Scenario Analyses							
Squeezed Version							
Factor	States						
Product segments [letters key to 'market segments']	A1. E-med records	A2. Activity/fitness tracking	A3. Medical diagnostics	A4. Smart prostheses			
Market segments	A. Health	B. Gov't oversight (detect misdeeds)	C. Taxing	D. transport			
Notable Apps	F. Google Flu	S1. OK Google	S1. Dr. Watson				
Architecture	Distributed data	Distributed processing	Remote interfaces to central processing (Vs. desktop comp)	Multi-channel processing			
Regions	US	China	W Europe	Other			
Standards	Bodies	International					
Regulations	International collaboration	Proactive regs	Soft regs	Covering multi-actors handling data streams			
BD Development guiding policies	Open source emphases	platforms	Scale up				
Boosting policies	R&D funding	Free vs. Fee					
Industry Structures	Start-ups	Consolidation (M&A)	Multi-actors	Alt business models			
External forces	Economic health	Interest rates	war	terrorism			
Infrastructures	Knowledge reservoirs	Cross-data type combinations	Datafication (e.g., collect & provide all Fed data)	Linkulation			
Key Actors	Google	IBM	Hackers				
Societal concerns	Privacy	IP	New governance structures	Digital divide			
Privacy Issues	Awareness (of threats to us)	Privacy policies	Data protection actions	Compliance checking			
- Security	Hacking – private	Hacking – gov't	Data protection actions				
Subsystems	Distributed storage	Parallel processing	Remote Apps				
Synergistic Technologies (combo's with BD)	AI						
Key Tech Capabilities	Sensors development						
Underlying IT	Memory	Processing power	Quantum computing?				
R&D Thrusts	Data science	BD analytics	Viz (Tableau)				
(Data resources)	R&D funding	Res pubs	Patents	Newspaper coverage			
(<u>comparables</u> – to compare trends)	Electrification	Other IT capabilities	Digitalization of pictures (cameras to smart phones)	TV – generations			

Our Big Data Papers

- 1. Zhang,Y., Chen, H., Zhang, G., Porter, A.L., Zhu, D., & Lu, J. (to appear), Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research, *Technological Forecasting and Social Change*. DOI: 10.1016/j.techfore.2016.01.015.
- Zhang, Y., Robinson, D.K.R., Porter, A.L., Zhu, D., Zhang, G., & Lu, J. (to appear), <u>Technology roadmapping for competitive technical intelligence</u>, *Technological Forecasting* and Social Change. DOI: 10.1016/j.techfore.2015.11.029.
- 3. Huang, Y., Schuehle, J., Porter, A. L., & Youtie, J. (2015). A systematic method to create search strategies for emerging technologies based on the web of science: illustrated for 'Big Data'. *Scientometrics*, 105(3), 1-18. DOI 10.1007/s11192-015-1638-y.
- 4. Youtie, J., Porter, A.L., and Huang, Y. (2016), Early social science research about big data, *Science and Public Policy*, http://spp.oxfordjournals.org/cgi/reprint/scw021?ijkey=kuwzJ4wJmF7R4dz&keytype=ref
- 5. Huang, Y., Zhang, Y., Youtie, J., Porter A.L., and Wang, X. (2016), How does national scientific funding support emerging interdisciplinary research: A comparison study of Big Data research in the US and China, *PLoS One* 11 (5): e0154509. doi:10.1371/journal.pone.0154509.
- 6. Porter, A.L., Huang, Y., Schuehle, J., and Youtie, J. (in press), MetaData: BigData research evolving across disciplines, players, and topics, *IEEE BigData Congress 2015*.

Selected FIP References

- Daim, T. Porter, A.L., Chiavetta, D., and Saritas, O. (Eds.) (to appear 2016), Anticipating Future Innovation Pathways through Large Data Analytics, Springer, New York.
- Watts, R.J., and Porter, A.L. (1997), Innovation Forecasting, *Technological Forecasting and Social Change*, 56, 25-47.
- Porter, A.L., and Huang, Y. (2016), Forecasting future innovation pathways with big data analytics, *CIMS Innovation Management Report*, 8-13 (July/August), Poole College of Management, NC State University, Raleigh.
- Robinson, D.K.R., Huang, L., Guo, Y., and Porter, A.L. (2013), Forecasting Innovation Pathways for New and Emerging Science & Technologies, *Technological Forecasting & Social Change*, 80 (2), 267-285.
- Global Tech Mining Conference Special Issues: Technology Analysis & Strategic Management; Technological Forecasting & Social Change; Scientometrics; International Journal of Technology Management.

Resources

- The text mining software used: VantagePoint www.theVantagePoint.com [or Thomson Data Analyzer]
- Global Tech Mining Conference, in conjunction with Atlanta Conference on Science & Innovation Policy, September, 2017

One more data-based example: ** Indicators of technical "emergence"

