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1. Fends of Data:=Cenitric.:Systems -and Unmet Needs



Trends of Connected Systems and Data Driven Economy @@'"dusfﬁﬂm
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*Zettabyte: 1Zettabyte = 1021byte, 1Zettabyte is said to be "the number of sand grains on sandy beaches around the world"
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Growth of Semiconductor Industry
US$1 trillion
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Industrial Al and Data-Centric Metrology for
nghly Connected-and Complex Industrial System
| @:Univ. of -Maryland s o
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Problem Solving
Through Continuous
Improvement and

Solve Standard Work

Visible Invisible

Jay Lee, Book on Industrial Al, Springer, 2020
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Data and.Modeling Issues in Complex Industrial Systems

Reference Source Target Source

Data Usability

Machine Response

* Uncertain Quality - Good Quality
(D“fted or Sh|fted) ° Comprehensive

High | Comprehensive - Background Recorded s =
* Background Recorded, (e

0.5

Setting 2

Setting 1

__________ Fm—m————————
« Bad Quality 1 * Good Quality Source Reference Source Target Source
* Broken (Not 1 « Broken (Not
Low Comprehensivg) _ I comprehensivc_e) _ Data Quantity v High Volume v Low Volume
« Background Missing I « Background Missing
| v Dynamic
- : : v Time-restricted
v
- Data Quality High quality / Drifted / Shifted
Low High < Noisy
Data , v Local
: v h , ..
Data Usefulness Representativeness comprehensive v High variation

Data Availability v High availability v' Low availability
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Need Better Data Representation Methodology

¥ | imited Data Scenario High Volume Data Scenario

- Difficult for modeling * High model complexity :
- Usually need data augmentation strategy to generate * Labeling would be demanding work for user
more-data « Computation expensive

 Wholedata space is not fully explored

. clusterin Topological Data
Traditional DOE Sampling methodsg Anglys?s
methods methods :

Il :- ‘ ! :: s 8

Pressure Pressure

Low Complexity/Quantity High Complexity/Quantity



Example: Data Representation using @l@lndusfriam
Topological Data Analysis (TDA)

. _ : only labeled data (170,000
Data Generation * Preprocessing " Node color is represented by
» - Feature Extraction I mixture proportion of each class

Graph - " Construct graph by graph-based TDA: ;

Construction

* Selected data from nodes of

Scratch Center Edge-Loc graph

Modelino «_ * Develop an adaptive model to
evaluate the data space
Evaluation « Design an evaluation strategy
Edge-Ring  Near-Full to decide next representative
New GEVEY

Representative g e

Random Donut None

»
»

Ref:https://en.wikipedia.org/wiki/Wafer_testing#/media/File:Wafer_prober_serv >
ice_configuration.jpg Hsu, Jia, Li, Lee, A Novel Quality Clustering Methodology on Fab-Wide Wafer Map Images in Semiconductor Manufacturing
ASME 2022 17th International Manufacturing Science and Engineering Conference.



@%@Industriqlﬂ

CENTER FOR INDUSTRIAL ARTIFICIAL INTELLIGENCE

Outline

2. Trends of Alindustrial:Al:-Systems
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Al.:Has.Béen Gaining Amazing Attention since 2022

Level of Attention

$50 B

NVIDIA Revenue NVIDIA Valuation >$ 3T 5




Data
Centers




Industrial Al

» Industriat Al

IS a syistematic discipling
which focuses on
developing,validating and
deploying various machine
learning algorithms
systemically:and rapidly
for industrial applications
with-sustainable
performance
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Energy Systems Healthcare/Medical
(Electrification, (ICU, TBl and Pharmacy 4.0+l

Wind Turbine,

etlc)

Smart & Digital
Manufacturing

Machine
Learning

Semiconductor DO m ai N

Manufacturing

Prognostics and
Health +
IV Gammmnsinma € {

Industrial Al Discipliﬂe

(Methodology,
0/. Tools, and

Curriculum)

Advanced
Analytics

iy BEIE!

Engineering



Overview of Industrial Al Systems

' Traditional Non-Traditional Methodology
industrial Al Machine Learning Machine Learning Platform

1. Manufacturing Al 1. Component 1. Signal Process & 1-T0I0£|0 ical Data 1. Stream-of-
« Semiconductor o s Feature Extraction LSS Oualitv
« Machine Tools | 14 e Ty

* Industrial Robots

« Production Quality &g‘ 6,

2. New Energy Al

A} 2. Physics-Based
{ﬁ‘% Mo)(/jel

. \F/’Vi nd T%r |n? 2. Unit . e VL]
» Power Supplies . ; 3. Data-Driven Mode : :
*EV Batter;r/)p fﬁﬂ L 2. Domain Adaptation 2. 5C-level Cyber-
* QOil & Gas & Transfer Learning  Physical System
. 4. Deep Learning e o Ty g
3. Transportation Al > 4 IS, S 'S = 48 =
. Autoenotive _ D — <L - A o —— o
* High-speed Trains 5. Health Assessment -~ —=— 00 ==& -
* Aviation ¥ ) = = 2t e
* Marine Vessels i O = v —
6. Health Diagnosis 3. Similarity-Based
4. Healthcare Al Mo . .
» Rehabilitation 3. Digital Twin
* Neurocritical Care 7. Predictive : —
. Sﬁorts_ Medicine Maintenance e 2=
* Chronic Care = E. =
8. E_?maining Useful 4. Surrogate Model -~ L
I e sicaL wono e
5. Just-in-time Model ==

9. Failure Modes and 6. Industrial Large
Effects Analysis Knowledge Model
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Traditional Machine Learning vs.
Non-Traditional Machine Learning

Traditional

Machine Learning

Supervised Learning,
Unsupervised Learning,
Reinforcement Learning,

Federated Learning,

on-Traditional Machine Learning

Transfer Learning, Domain Adaptation,
Similarity-based Learning,
Stream-based (SoX) Learning,
Industrial Large
nowledge Model, et
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Traditignal Machine Learning Methods and Algorithms
for Industrial Systems

Machinél.earning
Methods

: Control Charts One-Class Support 2 SOM-MQE
One_CIaSS DeteCtlon (Statistical Process Control) Vector Machine PCA-T GMM-L2
Fault-Detection
Binary Classification ) Logistic . Support Vector
_ NalveBayes  pegression oo o On 11€es e

Algorithms

Fault Diagnosis

Binary/ Multi-class (Deep) Neural Fuzzy Inference Self-Organizing
Classification Networks Systems Map
S ised R . Linear General Linear Gaussian Process (Deep) Neural Networks
Health upervised Regression Regression Regression Regression
Assessment _ Errcinal
UnSUperV_'sed Parametric Hidden Markov Kaman Filters /  Factor Component
Regression Method Model Particle Filters Analysis Analysis
STy Supervised Linear General Linear Gaussian Process (Deep) Neural
Remaining Regression Regression Regression Networks
Useful Life

Predicti Unsupervised Kalman Filters / Stochastic Process Similarity Survival / Hazard Analysi
rediction Prediction Particle Filters Model Based Model (Cox Model)




CAJ Zero Downtime Compressor %ﬁ%@[mﬂjgﬁ
Q&U at Toyota Georgetown, KY

TOVOTA Al for Compressor Surge Prediction

o for zero-downtime
performance by ‘testing the
machine’s blood’

September 29, 2021

*"J By llene Wolff

% Contributing Editor,
-

P SME Media

In the mid-2000s, the compressed air system at the Toyota North America

: Sensors Condition Monitoring & |\f\\,
c%?tfgsﬁ'ér Data Acquisition System DSturgte
2 (XM Module & PXI) etection

Air Conditions

Position-to-Flow - - Surge Tests under
Mapping [ Data-Driven Different Ambient
Surge Modeling

Feature Selection

Controller
(Allen Bradley Different Ambient
S/LC PLC) Air Conditions

plant in Georgetown, KY, crashed on average more than once a year. That led

some at the plant to wonder whether leveraging machine learning and Al
could address this problem by providing anomaly detection, fault identification
and, most importantly, prediction of impending failures before they occur.

Surge Points

Not Su rge Unplanned downtime of the
compressed air system meant,
’C_U\ of course, that the entire
T factogy had a problem. The
: n ed compressed
<. 2 ‘
Qo
') .
S > ero Downtime
)
0 .
5 No failure
) ~— .
— a since 2006

) 10 o) 0 25 30 1 | ‘ ‘ ‘
ﬁ'me (ZSGC) 220 130 140 Clle)Prenlt6gAm1p7s 180 190

https://www.sme.org/technologies/articles/2021/september/go-for-zero-downtime-performance-by-testing-the-machines-blood/



Reconfigurable Al Augmented PLC Systems

Enable Zero-Breakdown Productivity



Al-Augmented Uptime Improvement %@mﬂﬂgﬂf
for P&G (2007-11)
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http://imagenes.recursosgratis.com/gif-animados/showphoto.php?photo=7501&password=&sort=1&cat=598&page=1
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Al Augmented Machine Tool Health
Momtormg Technology Demonstrated in 2018
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Non-Traditional Machine Learning — [ i
Transfer Learning

»uiliie.mostioptimum.way of learning iIs to utilize the pre-
acguired knowledge as the basis of intended learning plan.

» Inimachine learning application, the exchanging knowledge
across different tasks is named as transfer learning.

» In industrial applications, providing the data under different
operating and health conditions iIs not straightforward.

—_ Operating condition 1 Operating condition 2 1 1
 Temperature  Temperature
+ Load « Load
 Pressure % .

Pressure
_ _ * Rotating speed * Rotating speed
Data is available

Data is not available
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Domain Adaptation &b Industrial Al

Source:Domain Target Domain

v

Operating condition 2
Operating condition 1

Source Classifier

Domain Adaptation is a transfer
learning technique that can be used to
reduce the data distribution
discrepancy between the two domains.




Integrated Machine Learning tor &ifbIndustrial Al
Highly Connected Systems

Domain knowledge: Low : I

Knowledge within industrial
system

e
‘/
.7
-~ H2H
.
-
-
-----

H2M: human-to-machine communicatic
M2M: machine-to-machine communica

Domain 1 H2H: human-to-human communication
Reference

e.g. H2H

Lee, Jay. Industrial Al: Applications with Sustainable
Performance. Singapore: Springer, 2020.
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Tesla Full Self-Driving (FSD) Beta V12
(released on 8/26/2023)

» Musk highlighted that FSD V12 relies
entirely on artificial intelligence and
neural networks to drive, with no
traditional code. He stated “there are no
heuristics, no lines of code” to explicitly
tell the car how to handle situations like
traffic lights or turns. Instead, the system
has been trained on large volumes of
driving footage to learn proper driving
behavior.

 Reduced 90% of the code with better
performance.




Non-Traditional Machine Learning &Pindustrialal
Stream-of-X (SoX) Methodology

Stream of Gualityii(SAQN) is a traceable systematic methodology for connected quality.

«.ndtican, collect the:manufacturing infarmation of a product during its production processes.

 The:data of:each station can be labeled with a time stamp and saved in an immutable block. Then the product
quality:dataforms an information stream and can be stored in structured block chain.

« It can'be;used to describe the:product, trace the entire production process and analyze the root cause of quality

CENTER FOR INDUSTRIAL ARTIFICIAL INTELLIGENCE

Issues.
X3: Material X3: Material
X,: Machine X4: Method X5,: Machine X4: Method
X1: Man X5: EnvironmentX;: Man Xs5: Environment

Y;: Quality

X;: Process factor
Yi=fi(X1,X2,X3,X4,X5,Y;1)
Y = g(yl, Yz, aonp Yn)

Yy

Manufacturin rocess

X1: Man Xs5: EnvironmentX;: Man Xs: Environmeny
X,:Machine X4: Method X,: Machine X,4: Method
X3: Material X3: Material

Lee, J., Stream-of-Quality (SoQ) methodology for industrial Internet-based manufacturing system,
https://www.sciencedirect.com/science/article/abs/pii/S2213846322001912
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Maintenance Supplier ERP Process Quality Production &
Order Management Improvement Management Logistics

g0 Ao IAfo IAfo
- n n n

Data Cehtfic Cyber Cyber Cyber Cyber Man%%f&ring
Manufactuting Component Machine Process Product

Line
Systems

Degradation Health P . _ _
assessment LA (e 1eErE Correlation Analysis Predict & Root cause tracking

Reconfigure &
h li

Physical _ _

ManUfaCturing M1 e @ M4 | —> Final Quqllty —> Delivery
Inspection

Systems M2 M3

M1
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_FoxconnWerld:Economic Forum (WEF) Lighthouse Factory Award
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Domain, Data, and Large Knowledge Model

Knowledge
Model

Knowledge/
Experiences




Industrial Large Knowledge Model
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for Data-Rich Complex Industrial Systems

Equipment and
Products

Subject Matter Expert

Scope of Research

Intelligent Metrology

_________ B
(SME) Tweak :
I
1
Sensors and | Streaming Embedded | Decision
Metrology Data Intelligence Support
Data ] Analyticgi Information"i
Interface to .
Supply Chainy----- Physical Domain Historical
Models Simulation Experts Data
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LI . " aa

Keynote Speaker

Mr. Sam Altman

OpenAl CEO ‘%

‘ ished Chair Professor,
Industrial Al Center,
of Maryland College Park

o




/’ — = _
=] \
1= LE
| ———
|
I Text Video Model
I =
|
| S ( )
|\ Image Simulation Sensor,

——————————————————

Multiple Data Source

Industrial Large Knowledge Model

Industrial.Generative Al (IGAI) = Industrial

\

%

Documentation

- = e e e e e e e e e ——

\ Automation /

H=E

Data Analytics
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/

&

Quality Control
\uaty Y,

4 N

Simulation &

\_ Prototyping /

Intelligent Control

N /

Large (Domain) Knowledge Model

-~
~

\

\
EZE

Monitoring &
Inspection

- /

g l_)@ 5 QX
Exud B 7
Intelligent Analysis

\& Decision Making

A )

Predictive
\ Maintenance /

‘_—————————————-—————-——————————-———ﬁ’

Industrial Application

Jay Lee, A Unified Industrial Large Knowledge Model Framework in Smart Manufacturing, Dec. 2023

https://arxiv.org/pdf/2312.14428.pdf



Large Language Models (LLMs) vs. Large Knowledge Models (LKMs)

® | arge Lariguage:Model: (LLELMs):

LLMs like ChatGPT, are trained on vast datasets of text. They
excel in.understanding and generating human language,
making them adept at tasks like natural language processing,
conversation, and text generation. However, their knowledge
Is often general and not specialized.

® | arge Knowledge Model (LKMs):

LKMs are designed to process and understand large volumes
of domain-specific knowledge (May have different types of
data, especially machine sensor data). They are tailored for
specific industries or applications, incorporating detailed,
expert-level understanding of particular fields.



Data Handling
and Privacy

Domain-
Specific
Knowledge

Integration and
Customization

Scalability and
Maintenance

Real-Time
Decision
Making

LLMs vs. LKMSs In Industrial Al

LLMs

Potential concerns with data security, as they
often require sending data to third-party
servers (Like‘OpenAl) for.processing

Knowledge is general
may lack deep, industry-specific insights

Need additional resources for integration and
customization to fit specific industrial
requirements

Highly scalable but necessitates external
updates and maintenance

Limited in handling real-time, complex
industrial decisions due to their generic
training

@'@)Industriam‘f

LKMs

Offer greater control over data privacy, as they
can be hosted within a company’s secure
environment

Specialized
provide in-depth, technical knowledge relevant
to specific industries

Easily tailored and integrated into existing
systems, aligning closely with industry-specific
needs

Scalability and updates are managed internally,
offering more control by the company but
requiring dedicated resources

Better suited for real-time decision-making in
industrial settings, leveraging specific industry
data

CENTER FOR INDUSTRIAL ARTIFICIAL INTELLIGENCE
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3. SomeiExamples
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History of Our Semiconductor Research

2003 2005 2006 2009 2016 2017 2018 2020 2021-Now

o N : ALam B ACY W N winbond |
@ ch SAMSUNG Do @ﬂﬁpﬁ@%!gg nspire the Next ihl:i’
||:|| A4
S g phmsocicty L
PdM: Predictive Maintenance
ESC: Electrostatic Chuck

PECVD: Plasma Enhanced Chemical Vapor Deposition
CMP: Chemical Mechanical Polishing

FDC: Fault Detection & Classification

PVD: Physical Vapor Deposition

2011

PAONRS

a

/
A
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Chamber Difference Quantification %@:{;ﬂxﬂ:ﬁ!ﬁ
using Traditional PCA

Goal:

To compare the-difference and measure‘the-distance between different machines based on the machine fingerprints (the
PCs of!lE:features:under different machine offset settings or DG configurations).

Steps:
1. Extract statistic features of sensors 4. Calculate averaged T*2 and Euclidian distance
2. Conduct sensitivity analysis-and select features as discrepancy measurement
3. Perform PCA on selected feature matrix of all 870 5 Visualize PC of different machines

experiments (first 5 PCs are selected)

01506 vs 050 T2 =3.9061 Euclidian Dist =5.5252 01506 vs 055 T2 =4.4466 Euclidian Dist =5.9917 0518 vs 053 T2 =1.7018 Euclidian Dist =0.96724
Result:

Machine 1 (056) is
compared with 2
055),3 (055),and 4
(053)




Data Centric Metrology for &P industrialAl

S e m I C O n d u C t O r M an u f aC t u r I n g CENTER FOR INDUSTRIAL ARTIFICIAL INTELLIGENCE

A systematic process-data-driven approach which

Differ ent caliberates the target machine input parameters to
Machine

: compensate machine responses discrepancy from the
T~ NS golden machine.
Golden Machine Target Machine DOE Monitoring

Process Golden/\/
Discrepancy Process

@®  Major Steps Settings
Global Full Factorial Experiments
e Local Mixed-level Experiments

.~ Target
Process

Sensor
Readings

Product Yield /

Variation | N Machine
Golden Wafer Target Wafer Calibration Data-driven Modeling
Product : \

Product

Chamber matching is the common practice to increase production
consistency and yield by controlling the machine process based on
feedback from product metrology.

Machine calibration is the common practice to adjust machines to have
identical performance by assigning global offsets on machine settings.

: : ) : L : Compensate -
Chamber matching and machine calibration could significantly improve Pararl?weter Offset B“"‘;r'\gggis el
production yield of the etching process.




%Industrialﬂ’

Current NIST Award
Digital. Twin.- Enabled Yield Enhancement Methodology for
Semlconductor Manufacturing by Using Stream-of-Quality Analytics

Overall Objectives: This proposal aims to model the complex process-to-process
(i.,e., CMP-Litho-Etch) interaction and investigate its impact on product yield (i.e.,
uniformity, CD, e-test) by developing novel SoQ analytics. The established SoQ will be
further utilized to perform root-cause analysis and inter-process control for yield
enhancement.

AMAT UC & UMD

» Simulation/Production/Yield Data

- Fab-Wide Digital Twin Integration
Framework Design

« Semiconductor Domain Experts

» Stream of Quality (SoQ) Analytics
+ SoQ Based Root Cause Analysis
» Model validation and enahncement

Research

Expected Deliverables.

1) Novel SoQ analytics that can model complex process-to-process interaction in
semiconductor manufacturing

2) RootCause Identification based on the SoQ analytics

3) Knowledge graph (data-driven ontology) forroot-cause analysis (Optional)

4) Novel digital twin framework design for fab-wide VM model integration and management

9) New public data for the entire research community




Prognostics and Health Management for @@,ndusma, A
Commemial Jet Engine Fleet CENTER FOR INDUSTRIAL ARTIFICIAL INTELLIGENCE

Feature Extraction Health Assessment using
and Signal Processing Self Organizing Map (SOM)

Detect variations and o
jumps in parameters Hormal
such as Exhaust Gas
Temperature (EGT),
spool rotational speed,
pressure, etc.

Critical

Phase | Deliverables

Improved anomaly detection Deliver
* Precision classification of Competitive

anomalies Value to Airlines
*Earlier fault prediction and Customers
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Library of Degradation Patterns @@'“d”s"""“'

Unit 1: all operating regimes combined Fitted curves of 10 units from the training set

Health Indicator
Health Indicator

« Fit an exponential degradation curve for each training unit
 Create alibrary of degradation patterns/models

Ref: NASA PHM Data Challenge, 2008
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Similarity Methodology (Fleet-Based System)

i History qf <€ — >
atestunit - i Remaining life
Degradation

= pattern
@
®© extracted
= from a
© training unit
= " B with run-to-
£ Ce T TS failure data
L —

Move the block of data alonb - End life of

time; find the most probable ~ the training

position with regard to the unit

curve of degradation pattern.

‘ >

Time/CycIé



Remaining Useful Life (RUL) Fusion

Test unit 18: Age=135; RUL=76

Candidates: Rank
by distance score;
cut at 25% increase
of the smallest
score

Remove outliers

(@)
£
©

]

(]

| —

S

o

0

c

Q

7]
©

o]
N
T

£

S

o
pza

o
~

Fuse thHese RULsS



Al-Augmented Analytics for ICU



Traumatic Brain Injury (TBI)

Objectives: To determine whether ICP elevations are associated with the presence
of:-ischemic changesin the Electroencephalography (EEG) recorded at the cortex
and-on-the scalp

Dataset: 104 (Traumatic Brain Injury)TBI patients with ICP and EEG waveform data
in unsynchronized 120Hz(ICP) and 256Hz(EEG)

PR S
A Wy

o Y,
W At fun s WY

A A A A

<— 4sec —>

. 4 Mixture of delta and high theta attenuation of the faster
= ICP = Cortical EEG ' frequencies are seen frequ_encies and enhanced higher
amplitude delta frequency

Challenges:

« Pattern changes on EEG along with ICP elevation is observable by Human Expert but
hard to auto-detect by machine learning model due to high variances and unexpected
artifact/noises

 The relationship between ischemic changes EEG and ICP elevation is intermittent and
inconsistent

« Patterns among different patients are different.
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Updating segment

SME Objective

translation

SME
Parameterization

ICP Elevation
Segmentation

EEG Feature /
Extraction

detection model

SME evolving

Decision

i
|
|
|
|
|
: Hypertension \
|
|
|

SME feedback

Explanation

Al Centric

Human Centric

Human-Al
Collaboration
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Elevation Segmentation- Human Al interaction

Analyzing data |Feature105.mat Result
mEm—————1 Feature: median

) Feature |Mean
SME Input median
Load data rms

0 1

Display | Box plot -1
Segment step

After elevation end segment

Plot Add to table
S S S S e sy S

e e | o ) iy

200 950 1000 1050 1100

ICP average

1000 1050
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Health Assessment Results %@!zﬂ:ﬂgglﬁ;
Summary of 43 ICU Patients

Good Recovery

Moderate Disability

MU VY B Sl SIP VEagr o

[ 10— E
.
=R | 1.
[scstiams o cat e smn |

Severe Disabilit
A Lo i o e b

=I lm:_l — Persistent vegetative

(15 BRIl | I 8

e

el B N I R0 T R
L2d [WUT " ¥ O WO N |

I s et e e E————— Death

1/58/1 - -—

15711 ¢
1/55/1 }
114711
1/44/1 ¢
1/42/1 0 o
ok — T Death with Withdraw
oA I of Care

V321 ™ |

tiD / Withdraw Care

&
o
®
o
o
O
»
B
o
o

- ST |
] 40 5 80
ICU Start Time Time / Hours
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_ Moreon ';np(c’()/

l\' frontiers
in Neurology Neurotrauma

A SECTION ~ ABOUT  ARTICLES  RESEARCHTOPICS ~ FORAUTHORS ¥  EDITORIAL BOARD O Q A ARTICLE ALERTS

< Articles

EDITED BY REVIEW ARTICLE m

. Mattias K. Skold Front. Neurol., 28 August 2020 | https://doi.org/10.3389/fneur.2020.00959

Uppsala University, Sweden

3
Check for

updates Download Article Export citation

REVIEWED BY

Marek Czosyia Intracranial Pressure Monitoring Signals After 398

University of Cambridge, United TOTAL VIEWS

Traumatic Brain Injury: A Narrative Overview -3
Danilo Cardim and Conceptual Data Science Framework |+ View Article Impact

&
University of Texas Southwestern
Medical Center, United States

Celeste Dias Honghao Dai'?,  Xiaodong Jia'?,  LauraPahren'?,  Jaylee'’and  Brandon Foreman*
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Outline
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Memo to the President on
U.S. Leadership in Advanced
Manufacturing

2-2-2 AND NATSEC TECH BY SCSP
JUN 18

. e . Organize: Close Gaps in the Manufacturing
Key convergence technologies that are definitive for
Innovation Ecosystem. Facilitate 3 U . S . N eed S tO Lead

advanced manufacturing competitiveness include: .
g p coordination and strengthen key federa and Excel Industrial Al <

« Industrial Al. Thanks to its early lead in deploying programs. with Speed and Scale.

generative Al, the United States appears well- Scale and Reimagine the Manufacturing
positioned for Al deployment in the physical world. At The United States should redouble pport for its

present, much of the progress has been self-organizing: core manufacturing technology innovation programs,
America is home to a variety of innovative startups and bringing resourcing for manufacturers more in line wit}
. . - spending by other industrialized nations.

Fortune 500 companies that are either building or P gy

deploying industrial Al solutions in innovative ways. Yet, Create a Data Foundry Network for Industrial Al. A

the United States is being substantially out-organized networked public-private partnership could serve as a

. L. . trusted hub for companies to share necessary datasets
on a national level. This is especially reflected from a i . , ,

to train sophisticated industrial Al models.
data perspective because the United States lacks large-
. . Establish a White House Office of Manufacturing. A

scale national programs that encourage sharing of , , ]
White House-level office would enhance policy

critical data sets needed to train industrial Al models — .
coordination and bring urgency to the advanced

across the private and public sectors.

manufacturing agenda.



Current Challenges of Al Talents

1. -Hard to Find
2. Can’t Afford

3. Hard to Keep
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Ref: Jay Lee, Industrial Al Book, Springer, 2020
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Thank You

More Information See

www.laicenter.com

Contact: leejay@umd.edu
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