"Tech Emergence" Indicators – to inform Management Of Technology

Alan Porter

Technology Policy & Assessment Center,
Georgia Tech
And
Search Technology, Inc.

7/14/2017

Agenda

- MOT can gain from empirical analyses
- Tech Mining
- Tech Emergence Indicators

Management of Technology (MOT) -- Much to gain from empirical analyses?

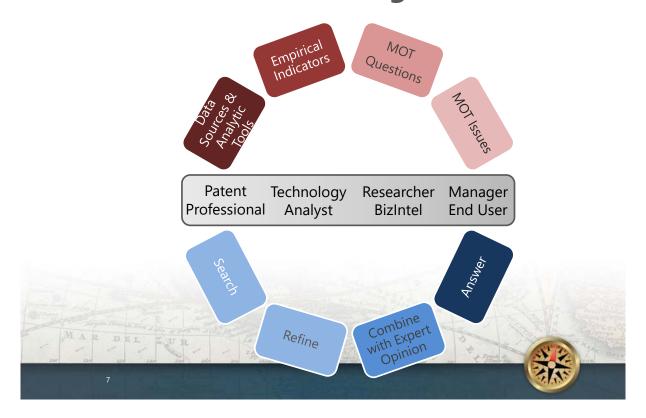
- Last Year, I
 - Griped that MOT lags many other management domains in exploiting information resources
 - Presented our "Forecasting Innovation Pathways" approach, building upon "Tech Mining"
 - Shared our "Big Data Analytics" R&D landscape
- This Year, I'd like to
 - Introduce Tech Mining
 - Spotlight Tech Emergence
 - Illustrate our Emergence Indicators
 - Suggest how these can contribute to MOT

Is "Empirical" Good?

- For the Good
 - Past decade "Big Data" explosion
 - Data Science on the rise
- For the Bad
 - Political climate disdain for data
- Where are we?
 - Decide if we want "evidence-based" MOT??
 - If so, confront "how" to incorporate data analytics effectively in MOT

Tech Mining

- Shorthand for text analyses of Science, Technology & Innovation (ST&I) data resources
- Extends "bibliometrics" exploiting metadata of compilations of abstract records of R&D publications or patents



Empirical Intelligence to be Garnered

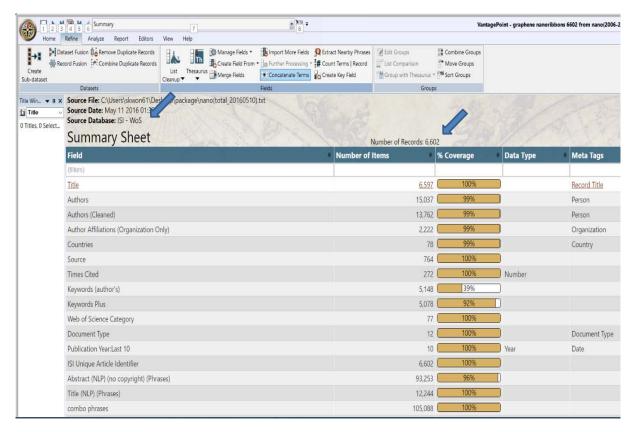
- R&D "Intel"
- Competitiveness/National Security Intel
- Open Innovation Intel
- Intel for Tech Forecasting

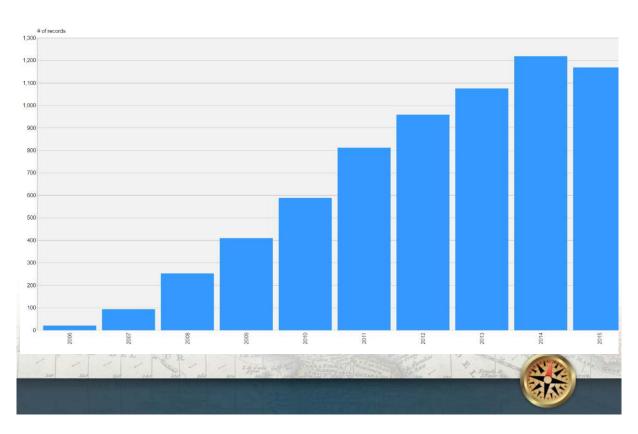
The Tech Mining Process

Core of our Empirical Analyses: Tech Mining

- Exploit global R&D (+!) abstract record compilations
 - e.g., Georgia Tech Library licenses ~200 such Databases
- Recent Exploration with Librarians some "Fav's" each covering ~10's of millions of papers or patents
 - Web of Science [11,396] vs. Scopus [8,514]
 - INSPEC & El Compendex [combined = 12,145]
 - PUBMED (MEDLINE) [1,972]
 - Google Scholar [~30,000 (not comparable search)]
 - Derwent Innovation Index (patents) [484] vs. PatStat
- We explored a "tiny" topic nanoribbons [hit counts above for 2002-2017]
 ["nanoribbon*" in Title, Abstract, or Keywords]

Textual "large data" – scientific discourse found in scholarly articles, patents, CVs, websites, etc.

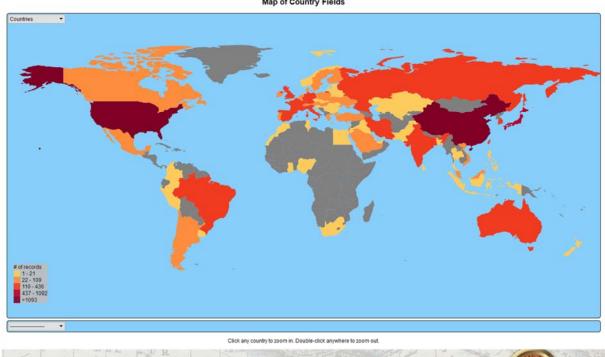

Anatomy of a Scientific Record


University Librarian [as analyst!]: Request -- What's my dissertation potential for: "Nanoribbons"?

Research Question	Tech Mining Indicator
Is this a research domain?	A) Size of dataset
How hot is this research domain?	B) Publication trend
Where do you find nanoribbon publications?	C) Top sources
Where, geographically, do you find nanoribbon research?	D) World map
Who's researching graphene nanoribbons? Who's most active at the research frontier?	emergence?
Who's researching graphene nanoribbons at Georgia Tech?	G) Sub-dataset GaTech, collaboration map
What are the "hottest" topics in the domain?	H) Topical emergence

Tech Mining Indicator A (activity scale?)

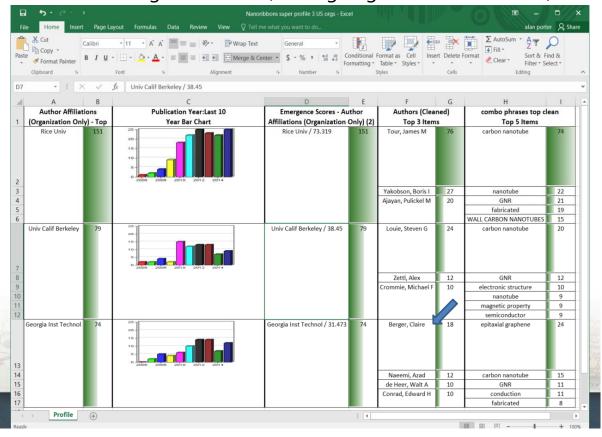
Tech Mining Indicator B (Trend?)

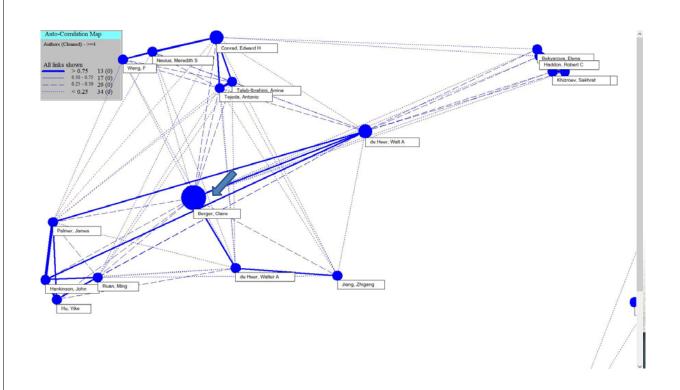


Tech Mining Indicator C (Top Sources?)

	# Records	# Instances	Source - Top 10
1	697	697	PHYSICAL REVIEW B
2	364	364	APPLIED PHYSICS LETTERS
3	272	272	JOURNAL OF PHYSICAL CHEMISTRY C
4	239	239	JOURNAL OF APPLIED PHYSICS
5	195	195	ACS NANO
6	180	180	NANO LETTERS
7	161	161	CARBON
8	136	136	PHYSICAL CHEMISTRY CHEMICAL PHYSICS
9	133	133	NANOSCALE
10	118	118	JOURNAL OF PHYSICS-CONDENSED MATTER

Tech Mining Indicator D (Where?)


Map of Country Fields


Tech Mining Indicator E (Leading R&D Organizations?)

Author Affiliations	# Records	Emergence Scores
1Chinese Acad Sci	289	91.3
2Hunan Univ	86	73.3
3Rice Univ	151	73.3
4Cent S Univ	59	69.2
5Shandong Univ	68	68.1
6Nanyang Technol Univ	112	64.3
7Univ Sci & Technol China	113	58.2
8Tsinghua Univ	125	55.0
9SASTRA Univ	9	54.5
10Peking Univ	125	54.4

Tech Mining Indicator F (Cutting Edge U.S. Researchers?)

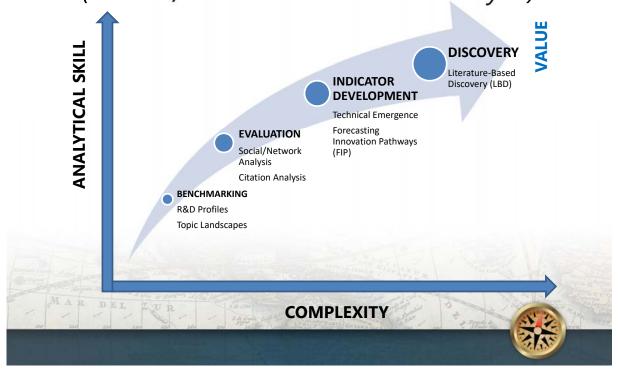
Tech Mining Indicator G (Georgia Tech Research Teams?)

Tech Mining Indicator H (High Emergence Topics?)

Top 10 Terms	# Records	Emergence Scores
1density function theory	505	33.1
2 nanosheet	225	15.8
3 potential application	195	14.4
4fabricated	404	13.8
5oxygen reduction reaction	54	12.9
6semiconductor	368	12.2
7multiwall carbon nanotube	83	11.3
8heterostructure	95	10.7
9negative differential resistance	77	10.7
10 electrodes	154	10.6

Data Science enhanced Library Target: Quick Tech Intelligence Profile (QTIP)

- Tune to meet user needs
 - Graduate student researcher
 - Faculty proposal development
- Deliver in 1 hour via Workbook
- Pathway to potent skill transition for librarians?
- Industry & Government MOT Competitive Technical Intelligence (CTI) parallels?



Librarian Futures? [MOT Futures?]

- Information Scientist
- Paper to Digital transition = radical!
- Role change: Searcher → Analyst/advisor
- Hard shift as the end users lack clear sense of what can help them
- Strong MOT parallels!
 - Value empirical intelligence
 - Generate and apply it

Value Chain of Tech Mining (Science/Innovation Discourse Analysis)

Next?

- Today and Tomorrow -> "Indicators of Tech Emergence" (5 sessions)
 - #1: Tuesday, 10:30—12:00
- Here and Now any information you want on Tech Mining or the software used, see Denise at our VantagePoint table
- After PICMET pursue these topics (including a "patent analytics" theme) at the *Global Tech Mining* Conference, Oct. 9, Atlanta
- Welcome your thoughts: How can Tech Mining and Emergence Indicators work for you??

