





























| Example: automotive engineering                                                                                                                                                 | Effect/                                | 18    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------|
| Used material – lightweight construction<br>e.g. aluminium, magnesium, carbon-fiber-reinforced polymer<br>(CFRP)                                                                | saving<br>ca. 200 kg per<br>automobile | er IC |
| Downsizing<br>e.g. 4 instead of 8 cylinder with nearly same performance                                                                                                         | ca. 100 kg per<br>automobile           | Car   |
| Secondary effects<br>e.g. less cubic capacity $\rightarrow$ less consumption $\rightarrow$ smaller tank;<br>less weight $\rightarrow$ less inertia $\rightarrow$ smaller breaks | ca. 50 kg per<br>automobile            | BMV   |
| Example: machine tools                                                                                                                                                          |                                        |       |
| Used material<br>e.g. CFRP for robotics, ceramic for milling machine                                                                                                            | considerable reduced energy input      |       |
| Production process<br>e.g. new laser $\rightarrow$ twofold performance, threefold cutting rate                                                                                  | reducing energy input up to 75 %       |       |
| Coolant<br>synthetic coolant instead of emulsion and direct injection                                                                                                           | twofold tool service life              |       |
|                                                                                                                                                                                 | Fraunhofer IPK, ICT, Trumpf, BMW       | /, Au |

## Research example: Sharkskin for airplanes, ships and wind energy plants

The inspiration comes from nature: The scales of fast-swimming sharks have evolved in a manner that significantly diminishes drag, or their resistance to the flow of currents. The challenge was to apply this knowledge to a paint that could withstand the extreme demands of aviation. Temperature fluctuations of -55 to +70 degrees Celsius; intensive UV radiation and high speeds. When applied to every airplane every year throughout the world, **the paint could save a volume of 4.48 million tons of fuel.** 



Production and testing of riblet-structured coating surfaces at Fraunhofer IFAM



🗾 Fraunhofer



































| earning in the 20th century:<br>Feacher centered | Learning in the 21st century:<br>Learner and team centered |
|--------------------------------------------------|------------------------------------------------------------|
| »Lecture«                                        | »Facilitation«                                             |
| Individual learning                              | Group learning                                             |
| Listen, follow the lead                          | Working together                                           |
| Information transfer                             | Expand the capability, skill                               |
| Lecturer as knowledge source                     | Lecturer as tutor                                          |
| Static content                                   | Dynamic content                                            |
| Homogeneity of                                   | Variety of                                                 |
| learning resources                               | learning resources                                         |
| Exams and tests                                  | Application and                                            |
|                                                  | performance growth                                         |
|                                                  | Source: Fraunhofer IAO, according to Chute                 |







