Beyond Best Practices:
New Developments in Open Innovation

PICMET Address
August 9, 2022

Henry Chesbrough
Faculty Director Emeritus, Garwood Center, UC Berkeley Haas School of Business
Maire Tecnimont Professor of Open Innovation and Sustainability, Luiss University

Agenda for the Talk

• Definition and Motivation for Open Innovation
• The Exponential Paradox
• Recent Research in Open Innovation
• Concluding Thoughts
The Rise of Open Innovation

• In 2003, I did a Google search on the term “open innovation”
 • Received about 200 page links
 • “open” and “innovation” had appeared in same sentence
• For this talk, I did another search, nearly 20 years later
 • Received 2 billion page links
 • Now open innovation has become a distinct concept
 • Though open innovation had multiple potential meanings

• Open innovation has spread throughout the world
 • Tech industry
 • Consumer products
 • Energy
 • Materials
 • Finance
 • Automotive

• And that is just the first page of LinkedIn results!
Open Innovation Definition

• Definition: “a distributed innovation process involving knowledge flows across organizational boundaries, for both pecuniary and non-pecuniary reasons”
 • Chesbrough and Bogers, 2014
Open innovation is NOT (just)

• Open source
• Crowdsourcing
• IP licensing
• University collaborations
• Startup engagement
• Venture capital, corporate VC
• Supplier-driven innovation
• User innovation

Each of these involves knowledge flows across organizational boundaries
Agenda for the Talk

- Definition and Motivation for Open Innovation
 - The Exponential Paradox
- Recent Research in Open Innovation
- Concluding Thoughts

Open Innovation has greatly expanded the intake of new technologies

- Ideas
- Crowds
- Contests
- Universities
- Startups
- Spinoffs
- Licensing
- Intermediaries
- Suppliers
- Customers
But congestion can be the result

- Evaluations
- Legal
- HR
- Finance
- Purchasing

Need support capacity to manage wider intake

The Exponential Paradox

- The Pace of Technology is Accelerating
- Exponential Technologies
- The Lifespan of F500 companies is shortening

- Yet US productivity growth is slowing down
 - US wage growth is even more stagnant
Where is the exponential growth?

![U.S. Total Factor Business Productivity Graph](image)

Average annualized growth rate, 1947-1969: 1.9%
Average annualized growth rate, 1966-2004: 1.6%
35% gap

Source: Center for the Study of Income and Productivity, Federal Reserve Bank of San Francisco, The Economist

![Productivity growth in 67 countries, 1950-2015](image)

Productivity growth in 67 countries, 1950-2015
Average hourly productivity growth

Source: OECD "Productivity Trends in 67 Countries", 2017
Investing in our future

Federal R&D as Share of GDP

The Best vs. the Rest

Labour productivity: value added per worker (2001-2013)

Notes: the global frontier is measured by the average of log labour productivity for the top 5% of companies with the highest productivity levels within each 2-digit industry. Laggards capture the average log productivity of all the other firms. Unweighted averages across 2-digit industries are shown for manufacturing and services, normalized to 0 in the starting year. The time period is 2001-2013. The vertical axes represent log-differences from the starting year; for instance, the frontier in manufacturing has a value of about 0.3 in the final year, which corresponds to approximately 30% higher in productivity in 2013 compared to 2001. Services refer to non-financial business sector services. See details in Section 3.3.
Open Innovation Results

- Widen the intake
- More eyes on the problem
- Unusual sources for novel solutions
- Useful knowledge is abundant
- Expand downstream capacity

THE THREE FACETS OF INNOVATION

- Innovation Generation
- Innovation Dissemination
- Innovation Absorption

Open up internally
- Open up externally
- Reduce friction
- Move people

Train People
- Complete the Solution
- Align with BU’s
- Align with Biz Model
- Or find a New Biz Model

Agenda for the Talk

- Definition and Motivation for Open Innovation
- The Exponential Paradox
- Recent Research in Open Innovation
 ✓
- Concluding Thoughts
Extending Open Innovation:
Tracing Knowledge Flows from Corporate Venture Capital

Tobias Gutman, Christopher, Chochoiek, Henry Chesbrough

winner, Best Paper Award, WOIC 2021
forthcoming, California Management Review, 2023
Inside-In Knowledge Flows

• Technically, not covered by OI definition
 – But critically important to achieve the desired innovation outcomes
• Overcome internal siloes between innovation groups and BU’s
 – Remember the logjam?
• Practices
 – Educate and guide senior level strategic decisions
 – Create reciprocal exchanges between CVC and domain experts in BU’s
 – Recruit and inspire intrapreneurs; share venture best practices with them
Outside-Out Knowledge Flows

- Also technically outside definition of open innovation
- Orchestrate external knowledge across ecosystem
 - Examples: connect promising startup to leading customer; certification programs for external complementors to support customers
- Practices
 - Curate and validate promising ventures, match with partners and customers
 - Use your operations as a test-bed to validate new external technologies
 - Share venture knowledge with other external VC investors, syndicate investment

How IBM Failed to Prosper from Watson

Jialei Yang, Henry Chesbrough, Pia Hurmelinna-Laukkanen
California Management Review, 2022, 64:3, 24-48

- Watson was technical leader in AI, won Jeopardy in 2011
- IBM invested significantly behind it
- IBM signed many partnerships with hospitals to apply Watson
- And it largely failed! (Watson was sold to Francisco Partners in early 2022)
Hypothesis vs. Result

• AI could help radiologists identify cancer
• Hospitals would welcome better diagnoses
• Error rates would be very low

• IBM can co-create directly with customers

Hypothesis vs. Result

• AI did fine with typical cases, but struggled with corner cases
• MD Anderson audit: $60M (not including staff time), no benefit
• False positive errors very expensive
• False negative errors even worse
• Lack of third-party support meant no exploration of alternative uses for Watson
What IBM’s experience teaches us

- The best applications for General-purpose technologies (GPTs) are unclear ex ante
- IBM did many things right, built many complementary assets
 - But was way too closed in its Go-To-Market for Watson
 - A Black Box: no APIs, no SDKs, no reference designs, no third party support
- Open innovation helps appropriate value from GPTs, because it enables multiple market experiments to take place in parallel to find good markets
 - Updates and qualifies Teece (1986) Profiting from Innovation framework
 - An open community may be a valuable complementary asset
Motivations for the Research

Evidence of Open Innovation’s impact on business performance is mixed:

- Surveys use proxy measures, often have limited response rate
- Knowledge flows are difficult to observe
- Several studies of Open Innovation and Firm Performance Show Mixed Results

Natural language processing (NLP) approaches are moving into the social sciences:

- Private Equity firms using NLP to create better measures of ESG
- Can we better measure Open Innovation practices with NLP methods?
- With more data, can we explain the mixed results for Open Innovation and Firm Performance?

Data

Open innovation Practices:

- Russell 3000 Index Stocks (98% US public equity market).
- Business section of each firm’s 10-K report to SEC for text extraction.

Firm financial performance:

- Tobin’s Q (2017 - 2019): firm market value/replacement cost of its assets
- Control variables (firm size; capital intensity; prior performance (ROA); R&D intensity; year fixed effect; sector fixed effect). WRDS CRSP Database.
Selected topics of OIPs derived from keywords

<table>
<thead>
<tr>
<th>Topics</th>
<th>Key words</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Network & community</td>
<td>data, advertis, campaign, measur, platform, buyer, collect, technolog, content, third-parti</td>
</tr>
<tr>
<td>2. Customer engagement</td>
<td>custom, softwar, solut, partner, data, servic, provid, platform, manag, applic</td>
</tr>
<tr>
<td>3. Partnership & joint venture activities</td>
<td>properti, partnership, oper, interest, real, joint_ventur, estat, partner, manag, million</td>
</tr>
<tr>
<td>4. Industry-academia collaboration</td>
<td>Program, institute, educ, student, author, school, univers, titl, require, educ_program</td>
</tr>
<tr>
<td>5. Contracts & IP licensing</td>
<td>licens, agreement, patent, product, develop, commerci, certain, collabor, grant, exclus</td>
</tr>
<tr>
<td>6. Bilateral transactional activities</td>
<td>franchise, restaur, oper, develop, agreement, franchis, sale, market, local, licens</td>
</tr>
</tbody>
</table>
OIP distribution: not evenly distributed. OIP5 (Contract & IP licensing) and OIP3 (Partnership & joint venture activities) are adopted more frequently compared to other OIPs.

Missing OIPs: Two OIPs were not found in our corpus: crowdsourcing and intermediaries.

The relationship between OIPs and firm performance

OIP impacts on firm performance

<table>
<thead>
<tr>
<th>OIP</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tobin’s Q</td>
<td>Tobin’s Q</td>
<td>Tobin’s Q</td>
<td>Tobin’s Q</td>
</tr>
<tr>
<td>OIP1</td>
<td>0.286</td>
<td>(0.238)</td>
<td>0.950***</td>
<td>(0.176)</td>
</tr>
<tr>
<td>OIP2</td>
<td>1.590***</td>
<td>(0.207)</td>
<td>1.590***</td>
<td>(0.207)</td>
</tr>
<tr>
<td>OIP3</td>
<td>0.170</td>
<td>(0.214)</td>
<td>0.179</td>
<td>(0.214)</td>
</tr>
<tr>
<td>OIP4</td>
<td>1.327***</td>
<td>(0.414)</td>
<td>1.327***</td>
<td>(0.414)</td>
</tr>
<tr>
<td>OIP5</td>
<td>0.329**</td>
<td>(0.164)</td>
<td>0.329**</td>
<td>(0.164)</td>
</tr>
<tr>
<td>OIP6</td>
<td>1.513***</td>
<td>(0.370)</td>
<td>1.513***</td>
<td>(0.370)</td>
</tr>
<tr>
<td>OIP_sum</td>
<td>0.657***</td>
<td>(0.109)</td>
<td>0.657***</td>
<td>(0.109)</td>
</tr>
</tbody>
</table>

Internal R&D moderation effect

<table>
<thead>
<tr>
<th>OIP</th>
<th>Model 5</th>
<th>Model 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tobin’s Q</td>
<td>Tobin’s Q</td>
</tr>
<tr>
<td>OIP1</td>
<td>0.566**</td>
<td>(0.249)</td>
</tr>
<tr>
<td>OIP2</td>
<td>0.960***</td>
<td>(0.235)</td>
</tr>
<tr>
<td>OIP3</td>
<td>0.104</td>
<td>(0.222)</td>
</tr>
<tr>
<td>OIP4</td>
<td>0.659</td>
<td>(0.462)</td>
</tr>
<tr>
<td>OIP5</td>
<td>0.642***</td>
<td>(0.169)</td>
</tr>
<tr>
<td>OIP6</td>
<td>1.654***</td>
<td>(0.357)</td>
</tr>
<tr>
<td>OIP_sum</td>
<td>0.762***</td>
<td>(0.110)</td>
</tr>
<tr>
<td>RDI*OIP_sum</td>
<td>-1.640***</td>
<td>(0.619)</td>
</tr>
<tr>
<td>RDI*OIP1</td>
<td>-5.815***</td>
<td>(1.836)</td>
</tr>
<tr>
<td>RDI*OIP2</td>
<td>7.551***</td>
<td>(1.615)</td>
</tr>
<tr>
<td>RDI*OIP3</td>
<td>-0.498</td>
<td>(0.866)</td>
</tr>
<tr>
<td>RDI*OIP4</td>
<td>2.195**</td>
<td>(1.107)</td>
</tr>
<tr>
<td>RDI*OIP5</td>
<td>-1.754**</td>
<td>(0.640)</td>
</tr>
<tr>
<td>RDI*OIP6</td>
<td>-50.078</td>
<td>(30.813)</td>
</tr>
</tbody>
</table>

Control variables: Yes
No. of Obs.: 6590
R-squared: 0.360

Control variables: Yes
No. of Obs.: 6590
R-squared: 0.406
Discussion

- New methods allow new insights!
 - 3,000 firms able to be measured, across 11 sectors
 - Open innovation is associated with improved firm performance
 - BUT, open innovation practices vary in their performance impact
 - AND, the impact of open innovation practices varies by economic sector
 - THEREFORE, **no uniform set of Best Practices exists** to practice open innovation effectively.

Agenda for the Talk

- Definition and Motivation for Open Innovation
- The Exponential Paradox
- Recent Research in Open Innovation
- Concluding Thoughts
Open Innovation Challenges Today?

- The Dark Side of Open Innovation
 - Who owns the data?
 - What rights do users have?
 - When is licensing pro-competitive, and when is it anti-competitive?

- From Globalization to Resilience
 - Is Closed Innovation making a comeback?
 - How will geopolitical tensions affect the use of Open Innovation?
 - Can Open Innovation contribute to the achievement of the SDGs?

The Growth of Open Innovation Institutions

- Several dedicated conference events each year
 - OUI
 - AOM PDW (also Best Scholar-Practitioner award at AOM this year)
 - WOIC
- Weekly research seminar on open innovation at Berkeley
- Several special issues and special sections on Open Innovation
- Several dedicated Chairs in Open Innovation
 - LUISS
 - TU/e
 - Purdue Engineering School
- Many young Open Innovation scholars receiving promotions
- Today’s PICMET Fellow award – may it inspire others to go further
2003

2006

2006

2011

2014

2019

chesbrou@berkeley.edu